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SUMMARY

Many US immigrant populations develop metabolic
diseases post immigration, but the causes are not
well understood. Although the microbiome plays a
role in metabolic disease, there have been no studies
measuring the effects of US immigration on the gut
microbiome. We collected stool, dietary recalls, and
anthropometrics from 514 Hmong and Karen indi-
viduals living in Thailand and the United States,
including first- and second-generation immigrants
and 19 Karen individuals sampled before and after
immigration, as well as from 36 US-born European
American individuals. Using 16S and deep shotgun
metagenomic DNA sequencing, we found thatmigra-
tion from a non-Western country to the United States
is associated with immediate loss of gut microbiome
diversity and function in which US-associated
strains and functions displace native strains and
functions. These effects increase with duration of
US residence and are compounded by obesity and
across generations.

INTRODUCTION

Previous work has established that diet and geographical envi-

ronment are two principal determinants of microbiome structure

and function (De Filippo et al., 2010; Febinia, 2017; Gomez et al.,
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2016; Kwok et al., 2014; Obregon-Tito et al., 2015; Rothschild

et al., 2018; Schnorr et al., 2014; Yatsunenko et al., 2012). Rural

indigenous populations have been found to harbor substantial

biodiversity in their gut microbiomes, including novel microbial

taxa not found in industrialized populations (Clemente et al.,

2015; Gomez et al., 2016; Obregon-Tito et al., 2015; Schnorr

et al., 2014; Smits et al., 2017; Yatsunenko et al., 2012). This

loss of indigenous microbes or ‘‘disappearing microbiota’’

(Blaser and Falkow, 2009) may be critical in explaining the rise

of chronic diseases in the modern world. Despite the frequent

migration of people across national borders in an increasingly

interconnected world, little is known about how humanmigration

affects the human microbiome.

The United States hosts the largest number of immigrants in

the world (49.8 million or 19% of the world’s total immigrants

and approximately 21% of the US population) (United Nations,

2017). Epidemiological evidence has shown that residency in

the United States increases the risk of obesity and other chronic

diseases among immigrants relative to individuals of the same

ethnicity that continue to reside in their country of birth, with

some groups experiencing up to a 4-fold increase in obesity after

15 years (Goel et al., 2004; Lauderdale and Rathouz, 2000).

Refugees, in particular, appear to be more vulnerable to rapid

weight gain (Heney et al., 2014; Hervey et al., 2009), with South-

east Asian refugees exhibiting the highest average increases in

body mass index (BMI) after relocation to the United States

(Careyva et al., 2015). The Hmong, a minority ethnic group

from China who also reside in Southeast Asia, make up the

largest refugee group in Minnesota (22,033 total refugees as

of 2014) (Minnesota Department of Health, 2017; Pfeifer and
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Figure 1. Assembly of a Multi-generational

Asian American Cohort

(A) Experimental design for cross-sectional and

longitudinal cohorts. See also Figure S1A.

(B) Ratios of overweight-to-obese individuals

across sample groups and over time in the United

States separated by ethnicity due to differences in

time in years.

(C) HmongThai (n = 43) and Hmong2nd (n = 41)

(ages 20–40) diet diversity displayed on a tree

that groups related foods together. Bars denote

unique foods, with darkness of the bar showing

prevalence of foods reported averaged within

HmongThai or Hmong2nd. Items highlighted in

red denote the most prevalent vegetables, sweets

and beverages, grains, and meats reported within

sample groups. Full descriptions of foods high-

lighted in red: coffee, brewed, regular; carbonated

citrus fruit drink; Chinese cabbage or bok choy

family, raw; rice, white, no salt or fat added; pork

chop, broiled, baked, or grilled, lean only eaten;

chicken breast, roasted, skin not eaten. See also

Figure S1B.
Thao, 2013). The Karen, an ethnic minority from Burma, have

been arriving in large numbers in more recent years (Minnesota

Department of Health, 2017). Overweight status and obesity

rates are highest among Hmong and Karen compared to other

Asian ethnic groups in Minnesota (Arcan et al., 2014; Franzen

and Smith, 2009; Mulasi-Pokhriyal et al., 2012; Dawson-Hahn

et al., 2016). Western diet acculturation, previous exposure to

food insecurity, and physical inactivity have been identified as

contributing factors (Franzen and Smith, 2009; Mulasi-Pokhriyal

et al., 2012), although they do not fully explain risk of obesity.

The gut microbiome plays a critical role in host metabolism

and is heavily influenced by an individual’s long-term diet (Hilde-

brandt et al., 2009; Wu et al., 2011) and can also respond quickly

to dramatic dietary changes (David et al., 2014; Turnbaugh et al.,

2009a). Thus, the gut microbiome offers an important window

into the consequences of diet and lifestyle changes associated

with human migration. To study the short- and long-term im-

pacts of migration on the microbiome, we measured gut micro-

biomes and dietary intake from Hmong and Karen immigrants

and refugees (henceforth referred to as immigrants) in cross-

sectional and longitudinal cohorts undergoing relocation to the

United States stratified by BMI (high R 25 and low < 25).

A first-generation immigrant group (foreign-born US residents)

included individuals with duration of US residence ranging

from a few days to more than 40 years, allowing us to test for
changes in the gut microbiome associ-

ated with long-term US residence. We

included second-generation Hmong im-

migrants (born in the United States to

first-generation Hmong immigrants) to

determine whether the effects of US

immigration were compounded across

generations by birth in the United States.

Finally, we followed a unique longitudinal

cohort of 19 Karen refugees for up to
9months beginning immediately before or after arrival in the Uni-

tes States to measure the short-term effects of US immigration.

RESULTS

Assembly of a Multi-generational Asian-American
Immigrant Cohort
We recruited 514 healthy Hmong and Karen female individuals

(aged 18–78; see STAR Methods for full exclusion criteria)

who either (1) were living in Thailand (HmongThai, KarenThai;

n = 179), (2) were born in Southeast Asia and had moved to the

United States (Hmong1st, Karen1st; n = 281), or (3) were born

in the United States and whose parents were born in Southeast

Asia (Hmong2nd; n = 54) (Figure 1A). We also recruited healthy

European American female individuals to serve as US controls

(controls; n = 36) (Figure 1A). We limited our study to women

based on insight from our Hmong community advisory

board that substantially more Hmong women than men were

relocating to United States. Participants in each sample group

were recruited into lean or overweight/obeseBMI class stratifica-

tions (BMI < 25 or BMIR 25, respectively) (Table S1). In 2016 and

2017, we recruited eligible individuals throughout the Minneapo-

lis-St. Paulmetropolitan area inMinnesota and at two locations in

Thailand: a rural village in Chiang Mai province (Khun Chang

Khian) and a refugee camp in Tak province (Mae La) (Figure S1A).
Cell 175, 962–972, November 1, 2018 963



Bilingual-bicultural research teams collected migration and

medical histories (Table S2), anthropometrics (weight, height,

waist circumference), 24-hr dietary recalls, and single stool sam-

ples from all participants. Karen participants who were about to

leave Thailand for the United States or who had arrived in the

United States within 2 months were invited to participate in a

longitudinal sub-study in which 24-hr dietary recalls and stool

samples were collected monthly for 6 months (Figure 1A). We

collected a total of 673 stool samples comprising 531 single-

and 142 multiple-time-point collections. Consistent with the

previously observed high rate of obesity in US immigrants (see

Introduction), obesity prevalence relative to overweight status

in our cohort increased after a decade in the United States

in the Hmong1st group (Chi-squared test statistic = 5.23,

p = 0.022) (Figure 1B). Therewas not a sufficient number of Karen

subjects with long-term US residence to test for changes in

prevalence of obesity.

To be able to associate gut microbiome variation with dietary

intake, we collected 24-hr dietary recalls from all participants

and analyzed macronutrient content using the United States

Department of Agriculture (USDA) SuperTracker food record

system (Britten, 2013; United States Department of Agriculture)

and published literature. We utilized the hierarchical format of

food codes derived from the USDA’s Food Nutrient and Data-

base for Dietary Studies (FNDDS) to categorize foods into a

tree structure where more closely related foods were grouped

together (Figure 1C). These groupings allowed us to share statis-

tical strength across closely related foods to complement dietary

analysis of macronutrients, much in the way that phylogenetic

beta-diversity analysis complements taxonomy-based profiles

of microbiomes. Foods reported by participants that were not

found in any USDA database (n = 72; Table S3) were manually

inserted into the hierarchical food tree, allowing us to account

for all foods reported by all participants. We confirmed our

ability to discriminate between the Karen1st, Hmong1st, and

Hmong2nd group diets using tree-based distances (Figure S1B),

identifying a stark increase in the variety of foods eaten by sec-

ond-generation Hmong relative to Hmong in Thailand (Figure 1C)

(t test of phylogenetic diversity, p = 4.828 3 10�10).

US Immigration Is Associated with Loss of Native Gut
Microbiome Species
We performed amplicon-based sequencing of the 16S rRNA

gene V4 region on 550 stool samples (one sample per partici-

pant). Principal-coordinates analysis (PCoA) of unweighted Uni-

Frac distances (Lozupone et al., 2011) revealed that Hmong and

Karen harbor distinct gut microbial compositions regardless of

country of residence, yet their microbiomes converge toward

European American microbiomes after relocating to the United

States (analysis of similarities [ANOSIM] R = 0.25, p = 0.001),

with second-generation Hmong and European American micro-

biomes sharing nearly identical cluster centroids (Figure 2A).

Interestingly, all US immigrant groups had higher interindividual

variation than their Thai counterparts (t test Hmong1st versus

HmongThai, p = 1.2 3 10�12; Hmong1st versus HmongThai,

p = 6.5 3 10�4; Karen1st versus KarenThai, p = 4.9 3 10�37).

The first-generation immigrants with the most perturbed micro-

biomes (most distant tertile from Thai groups) had both higher
964 Cell 175, 962–972, November 1, 2018
age (t test, p = 0.0013) and longer time (t test, p = 0.00079) in

the United States than those with the least perturbed micro-

biomes (least distant tertile from Thai groups).

Microbial diversity and richness were highest in Thailand and

decreased with each generation of residence in the United

States (Tukey’s honest significant difference [HSD], p < 0.01;

Figure 2B). As in other studies (Sze and Schloss, 2016; Turn-

baugh and Gordon, 2009), we found that lower phylogenetic

diversity was associated with obesity across all major study

groups (unbalanced two-way ANOVA, p = 0.0044; Figure 2B),

even after stratification by ethnicity (Tukey’s HSD, p < 0.01; Fig-

ure S2A). Furthermore, we observed a consistent loss of certain

native bacterial operational taxonomic units (OTUs) among first-

generation Hmong (Figure 2C). Although 7 of the 10 most preva-

lent OTUs found in HmongThai were also found at similar

levels in Hmong1st, others such as otu1812 (Faecalibacterium

prausnitzii) incurred a 45% loss in prevalence (Fisher’s exact

test, false discovery rate [FDR]-corrected q = 3.05 3 10�14)

(Table S4). Prevalence-abundance curve analysis showed that

many OTUs that were highly prevalent (>75% prevalence) in

Thai-resident individuals had both decreased abundance and

prevalence in first-generation US residents (paired t test, area

under the prevalence-log-abundance curve, HmongThai versus

Hmong1st, p < 2.2 3 10�16) (Figure 2D). 28 OTUs incurred at

least a 50% loss in prevalence among first-generation Hmong,

with more than half of them belonging to the genus Prevotella

(Table S4).

Bacteroides Strains Displace Prevotella Strains across
Generations in the United States
The Western-associated genus Bacteroides increasingly dis-

placed the non-Western-associated genus Prevotella across

generations in the United States (Figure 3A). The ratio of

Bacteroides to Prevotella was lowest in Thailand-resident indi-

viduals, highest in US-born European Americans, and increased

in a stepwise fashion from first-generation Karen to first-genera-

tion Hmong to second-generation Hmong (unbalanced two-way

ANOVA, resident continent p = 3.4 3 10�13, birth continent p =

0.00085, ethnicity p = 5.5 3 10�12). This progression corre-

sponded with the time that these groups had spent in the United

States.

Using deep shotgun metagenomics on 55 samples (mean

22,406,875 reads per sample) from Hmong in Thailand, newly

arrived Karen, long-term (>30 years) US resident Hmong, and

controls, we profiled strain-level variation within Bacteroides

and Prevotella. We aligned shotgun metagenomic sequences

against all 256 Bacteroides genomes and 153 Prevotella

genomes in RefSeq version 87 (O’Leary et al., 2016), retaining

any strains with at least 50% genome coverage in at least one

sample. We found that US controls had variedBacteroides strain

profiles, while those with Prevotella had only a single strain of

P. copri (Figure 3B). Conversely, Thailand-based individuals

carried up to four strains of Prevotella, with low abundance

and generally low genomic coverage of Bacteroides strains

possibly due to lack of related strains in the database. Long-

term US-resident Hmong displayed an intermediate profile, car-

rying a variety of Bacteroides strains and, in several individuals,

multiple Prevotella strains. Prevalence-abundance curves for the



Figure 2. Loss of Diversity and Native Bac-

terial Taxa with Time Spent in the United

States

(A) PCoA of unweighted UniFrac distances be-

tween bacterial communities of cross-sectional

participants revealed that phylogenetic variation

was differentiated by sample group (ANOSIM

R = 0.25, p = 0.001). 95% standard error ellipses

are shown around Hmong and Karen in Thailand,

second-generation Hmong, and controls.

(B) Alpha diversity of obese and lean individuals

across sample groups in Shannon’s diversity index

and Faith’s phylogenetic distance (PD). P values

denote significantly different groups using pairwise

tests of sample groups without stratification by

BMI (Tukey’s HSD, p < 0.01). Microbiome diversity

is significantly lower in obese individuals across

all sample groups (unbalanced two-way ANOVA

analysis with BMI class and sample group as

covariates, p = 0.0044). See also Figure S2A.

(C) Prevalence of OTUs in HmongThai and

Hmong1st, with OTUs sorted by prevalence in

HmongThai and samples sorted by richness within

sample group. OTUs shown are found in at least

75% of HmongThai samples (see Table S4 for

taxonomic assignments, mean group prevalence,

and statistics).

(D) Prevalence-abundance curves of all OTUs

present in at least 75% of HmongThai

samples, plotted separately for the Hmong1st and

HmongThai sample groups. See also Figure S2B.
Bacteroides and Prevotella strains with the largest change in

overall prevalence between HmongThai and Hmong1st showed

marked loss of Prevotella strains accompanied by an expansion

of pre-existing low-abundance Bacteroides strains following US

immigration (Figure S2B).

US Immigrants Lose Enzymes Associated with Plant
Fiber Degradation
We identified differences in functional pathways (Abubucker

et al., 2012) between HmongThai and long-term US-resident

Hmong1st (>30 years residence) using shotgun metagenomics

data (ANOVA, FDR-corrected q < 0.10; Figure S3A). First-gener-

ation Hmong harbored microbiomes with increased capacity

for sucrose degradation, glycerol degradation, glucose/xylose

degradation, and glucose fermentation to lactate, potentially

related to increasedconsumptionofmoresugary foods, although

most sucrose and glucose would not be expected to reach the

lower gastrointestinal (GI) tract (Dahlqvist and Thomson, 1963).

In HmongThai, we found an enrichment of pathways relating to

the degradation of complex carbohydrates, including b-(1,4)-

mannan degradation and starch degradation (Flint et al., 2012).

In order to better understand the substrates degraded by these
pathways that are either lost or below

the detection limit in US immigrants,

we assembled the shotgun data into

scaffolds and annotated carbohydrate-

degrading enzymes (CAZymes) (Lombard

et al., 2014; Yin et al., 2012). We found
significant shifts in abundance of 58 CAZymes across the

HmongThai, Hmong1st, and control groups (Kruskal-Wallis

test, FDR-corrected q < 0.05; Figure 3C), including three

b-glucan-targeting glycoside hydrolases (GH17, GH64, and

GH87) thatwere highly abundant in the Thailandgroupbut almost

entirely unobserved in the US groups. Loss of these glycoside

hydrolases may be associated with loss of dietary fiber sources

that promote persistence of the organisms that harbor these

enzymes, reducing the ability of the microbiota to degrade these

dietary fibers.

These three glycoside hydrolases predominantly originated

from P. copri (42 ± 11.1%; Figure S3B), supporting the hypothe-

sis that loss of Prevotella strains following US immigration drove

loss of plant-fiber degradation capability. We also observed a

loss of GH5 and GH26 glycoside hydrolases from HmongThai

to Hmong1st and US controls, which indicates a loss of cellulose

and b-mannan and possible xyloglucan degradative potential.

Beta-mannans are present in seeds, kernels, and corms, such

as palm (Subrahmanyan et al., 1956), coconut (Kooiman,

1971), and konjac (Pangsri et al., 2015), and xyloglucan is found

most abundantly in tamarind (Mishra andMalhotra, 2009); these,

interestingly, are food ingredients prevalent in Southeast Asia.
Cell 175, 962–972, November 1, 2018 965
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Figure 3. Bacteroides and Prevotella Strain

Diversity and Abundances

(A) Log-transformed ratio of Bacteroides to

Prevotella (B/P) relative abundances. US resi-

dence, US birth, and ethnicity were all significantly

associated with B/P ratio (unbalanced two-

way ANOVA, p = 3.4 3 10�13, p = 0.00085,

p = 5.53 10�12, respectively). KT, KarenThai; HT,

HmongThai; K1, Karen1st; H1, Hmong1st; H2,

Hmong2nd; C, controls.

(B) Coverage and relative abundance of

Bacteroides and Prevotella strains in 44 samples

across HmongThai, Hmong1st (who have lived in

the United States for more than 30 years), and

controls. Strains with genomic coverage >50% in

at least one sample were included. Hierarchical

clustering of strains and samples within group

is based on relative abundances. Strains with

genome coverage of <1% within a person are

considered not present (not plotted). See Table S5

for strain names.

(C) CAZymes with significantly different relative

abundances across HmongThai, Hmong1st

(who have lived in the United States for more

than 30 years), and controls (Kruskal-Wallis test,

FDR-corrected q < 0.05). See also Figure S3.
The loss of glycoside hydrolases for degrading cellulose, a plant

cell-wall component, was another indication that the microbiota

of post-immigration individuals had lost some of their ability to

degrade plant-derived fibers (El Kaoutari et al., 2013). These

findings parallel previous findings in a mouse model demon-

strating that the microbiomes of mice deprived of dietary fiber

lost the capability to produce certain glycoside hydrolases

(Sonnenburg et al., 2016).

Dietary Acculturation Partly Explains Microbiome
Acculturation
We observed significant differences across study groups in

the consumption of macronutrients commonly associated with

a Western diet: sugars, fats, and protein (unbalanced two-

way ANOVA, p < 0.01; Figures 4A and S4). There were no signif-

icant associations between fiber content and the microbiome,

possibly due to the many uncharacterized polysaccharides pre-

sent in different foods. PCoA of diet-based unweighted UniFrac
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(Lozupone et al., 2011) revealed distinct

separation by sample group (ANOSIM

R = 0.29, p = 0.001; Figure 4B) and a

gradient of dietary acculturation along

PC1 (Table S6). First- and second-gener-

ation Hmong had similar food choice

profiles (Figure 4B), while US controls

shared few foods with other groups

and consumed almost 10-fold less

white rice than other groups (Figure S5).

Although the microbiomes of US control

and second-generation Hmong clus-

tered together (Figure 2A), their diets

did not (Figure 4B).
Overall dietary profile was significantly associated with

overall microbiome profile across individuals (Procrustes test,

p = 0.001, n = 999 permutations) (Figure S5C), but constrained

ordination of the microbiome by the first five principal coordi-

nates of diet variation revealed that diet explained a relatively

small fraction (16.8%) of the total variation explained in the mi-

crobiome PCoA (Figure 4C). Thus, we found that diet likely was

not the sole contributor to the observed gutmicrobiome changes

in our cohort, although it is possible that dietary variation ex-

plains substantially more microbiome variation in this cohort

than we are able to determine due to our limited knowledge of

precise polysaccharide and other nutrient content of the foods

and due to complex individualized diet-microbiome interactions.

Gut Biodiversity Decreases According to Duration of
Residence in the United States
After finding that US residence was associated with a major shift

in dominant taxa in the microbiome (Figure 3A), we decided to
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Figure 4. Dietary Acculturation Partially

Explains Microbiome Variation

(A) Comparison of macronutrient consumption

across sample groups. Ethnicity is significantly

associated with calories (p = 3.4 3 10�05), sugars

(p = 0.00023), fat (p = 1.3e�07), and protein

(p = 3.2 3 10�07), whereas US residency is asso-

ciated with sugar (p = 1.3 3 10�16), fat (p = 7.1 3

10�24), and protein consumption (p = 5.73 10�05),

and birth continent is only associated with fat

consumption (p = 0.0081) (unbalanced two-

way ANOVA). HT, HmongThai; KT, KarenThai;

H1, Hmong1st; K1, Karen1st; H2, Hmong2nd;

C, Controls. See also Figure S4.

(B) PCoA of unweighted UniFrac diet-based dis-

tances reveals significant clustering by sample

group (ANOSIM R = 0.29, p = 0.001). Dietary

acculturation can be seen along PC1 with Thai-

resident groups on the left and European controls

on the right.

(C) Redundancy analysis (RDA) of the unweighted

UniFrac microbiome-distances constrained by

the first five principal coordinates of the PCoA of

unweighted UniFrac food distances. The resulting

RDA explains 16.8% of the total variation ex-

plained by PC1 and PC2 of the microbiome PCoA

(Figure 2A). See also Figure S5.
test whether US residents experienced more profound changes

in microbiome composition the longer they lived in the United

States. In a PCoA of unweighted UniFrac microbiome-based

distances, we found that time spent in the United States was

strongly correlated with the first principal coordinate axis

(⍴ = 0.62, p < 2.2 3 10�16; Figure 5A). Conversely, gut biodiver-

sity, as measured by Faith’s phylogenetic diversity, was nega-

tively correlated with PC1 (⍴ = �0.34, p < 3.19 3 10�09; Fig-

ure 5B), even while controlling for BMI in the Hmong (multiple

linear regression, years in United States b = �0.18, p = 0.0275;

Figure 5C). We note that age was highly correlated with years

in the United States in the Hmong1st group (Pearson correlation,

r = 0.444, p = 4.5 3 10�9), and therefore, age is also strongly

correlated with loss of diversity (multiple linear regression, age

b = –0.38, p = 2.2 3 10�6). Age was not significantly correlated
with diversity in any of the other

groups (Pearson correlation, HmongThai

p = 0.065, Hmong2nd p = 0.79, control

p = 0.37). Thus, we found evidence that

increased duration of US residence is

associated with decreased microbiome

diversity, but further study is needed to

separate the effects of age and duration

of US residence.

Prevotella Displacement Continues
for More Than One Decade
The longer immigrants spend living in the

United States, the more their microbiome

compositions diverge from their Thai

counterparts and converge toward Euro-
pean Americans (Spearman correlation, r = �0.41, p = 1.3 3

10�12 and r = 0.35, p = 1.2 3 10�09, respectively; Figure 6A),

with continued displacement of Prevotella with Bacteroides

(Spearman’s correlation, r = 0.44, p = 8.76 3 10�15; Figure 6B)

over time. We confirmed that this significant association

persisted after stratifying the first-generation immigrants

by ethnicity, despite the shorter time frame of US residence

in first-generation Karen (Spearman’s correlation, Hmong

r = 0.47, p = 8.163 10�19; Karen r = 0.19, p = 0.023; Figure 6B,

inset). As in the case of diversity above, we note that age is highly

correlated with years in the United States. However, we used the

European American group as a control group to test for associ-

ation of age with similarity to the HmongThai reference group

and found no association (p = 0.57) (Figure S6A), and the B/P

ratio in first-generation immigrants was significantly associated
Cell 175, 962–972, November 1, 2018 967
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Figure 5. Gut Biodiversity Decreases with

Time Spent in the United States

(A) Unweighted UniFrac PCoA of gut microbiomes

of first-generation Hmong and Karen participants

(n = 281), colored by years spent in the

Unites States, which ranges from 1 day to 40.6

years. PC1 is strongly correlated with the amount

of time spent in the United States (⍴ = 0.62,

p < 2.2 3 10�16).

(B) Unweighted UniFrac PCoA of gut microbiomes

of cross-sectional participants (n = 550), colored

by Faith’s PD. PC1 is negatively correlated

with phylogenetic richness (⍴ = �0.34, p < 3.19 3

10�09).

(C) In first-generation Hmong, diversity signifi-

cantly decreases over time in the United States

(multiple regression: years in United States

b = �0.18, p = 0.0275; BMI b = �0.05, p = 0.81),

but a significant association was not observed

in first-generation Karen (years in United States

b =�0.17, p = 0.71; BMI b =�0.27, p = 0.28) (gray

area represents 95% confidence interval).
with years in the United States regardless of age (multiple linear

regression, years in United States b = 0.096, p = 0.0094; age

b = 0.039, p = 0.0065) (Figure S6B). These findings show that

changes to the dominant members of the gut microbiome begin

during the first decade of US residence and continue for multiple

decades.

Microbiome Westernization Begins within 9 Months of
Immigration
To understand whether changes in the gut microbiome can be

detected immediately after relocation to the United States, we

examined the gut microbiomes of 19 newly arrived Karen over

their first 6–9 months of US residence. Within this short time

frame, all but one participant gained weight (paired t test,

p = 8.3 3 10�05; Figure 7A), and protein consumption increased

(paired t test, FDR-adjusted q = 0.048; Figure 7B), while the total

variety of foods consumed decreased (paired t test, p = 0.017;

Figure 7C), suggesting a period of acclimation to newly available

foods. This is in contrast to the Hmong1st group, whose diet di-

versity tended to increase followingUS immigration (Figure S7B).

Hmong participants’ diets may be more acculturated due to the

longer duration of residence of the Hmong community (mean

time US residence = 20.2 years among study participants)

when compared to the Karen community (mean time US resi-

dence = 1.9 years among study participants). Hmong1st diets

tend to be more similar on average than the Karen1st diets

to the European American diets (t test of mean tree-based

diet distance to European American group, p = 0.028). We
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again observed the displacement of

Prevotella by Bacteroides (paired t test,

p = 0.0013; Figure 7D) within this longitu-

dinal cohort, in many cases involving

a 10-fold increase in the Bacteroides-

Prevotella ratio, indicating that micro-

biome Westernization begins immedi-

ately after arrival to the United States.
This longitudinal cohort also included six Karen participants

from whom we collected samples in Thailand, prior to their

relocation to the United States. Using deep shotgun metage-

nomics sequencing on 13 samples from these 6 participants,

we found that Prevotella and Bacteroides strain profiles re-

mained largely stable over 6 months but sometimes underwent

substantial changes (subject highlighted in blue, Figure 7E).

We observed in general that relocating to the United States

induced a variety of short-term gut microbiome responses,

including disruption to the gut microbiome immediately after

arrival in two subjects (ID.273 and ID.304), expansion of

opportunistic pathogens (ID.305), gut disruption several

months after arrival (ID.275), and stability (ID.274, ID.308)

(Figure 7F). Thus, we found that short-term responses to

immigration of overall microbiome composition were variable

across individuals, but the displacement of dominant native

taxa with dominant US taxa begins within 6 to 9 months of

US residence.

DISCUSSION

This article reports the first large-cohort study of the effects of

migration from a non-Western country to a Western country on

the human gut microbiome. In multi-ethnic, multi-generational

cohorts of immigrants and refugees, we observed that gut mi-

crobiome diversity, function, and strain composition are

strongly impacted by US immigration and that both short-

term and long-term US residence and being born in the United
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Figure 6. Prevotella Displacement Con-

tinues over Decades of US Residence

(A) Similarity (1/Aitchison’s distance) of micro-

biomes relative to Thai-based groups (Spear-

man’s correlation, r =�0.41, p = 1.33 10�12) and

to controls (Spearman’s correlation, r = 0.35,

p = 1.2 3 10�09) (gray area represents 95% con-

fidence interval). See also Figure S6A.

(B) Log ratio of Bacteroides to Prevotella of

first-generation groups is significantly correlated

to years spent in the United States (Spearman’s

correlation, r = 0.44, p = 8.76 3 10�15). Signifi-

cantly correlated trends persist after stratifica-

tion by ethnicity (Spearman’s correlation, Hmong

r = 0.47, p = 8.16 3 10�19; Karen r = 0.19,

p = 0.023). HT, HmongThai; KT, KarenThai; H2,

Hmong2nd; C, controls; 0–40 = years spent in

the United States by Hmong1st and Karen1st)

(gray area represents 95% confidence interval).

See also Figure S6B.
States shift an individual’s microbiome along an axis

toward a more Westernized state. Even a short period of resi-

dence in the United States was sufficient to induce pro-

nounced increases, in some cases over 10-fold, in the ratio

of Bacteroides to Prevotella. Metagenome assembly showed

that the observed loss of Prevotella strains was associated

with loss of carbohydrate-active enzymes dominant in the

gut microbiota, including a near-complete loss of certain

b-glucanases and other glycoside hydrolases that break

down specific dietary fibers. Previous studies have demon-

strated intergenerational effects of microbiome perturbations

in animal models. These include loss of microbiota carbohy-

drate degradation function following removal of dietary fiber

(Sonnenburg et al., 2016) and intergenerational loss of diver-

sity following antibiotic perturbation (Schulfer et al., 2018).

The data presented here extend these findings to humans by

providing evidence that compounded intergenerational loss

of taxonomic and functional diversity is occurring in US immi-

grant populations, supporting the model of disappearing hu-

man microbiota proposed by Blaser and Falkow (2009).

We also performed extensive analysis and modeling of differ-

ences in dietary intake, as diet is known to be a strong driver of
microbiome variation (Bokulich et al.,

2016; David et al., 2014; Muegge et al.,

2011). Although we observed clear pat-

terns of dietary acculturation associated

with US residence, dietary variation only

partly explained microbiome variation

across individuals. Interestingly, the

diets of second-generation immigrants

remained quite distinct from the controls,

while their microbiomes did not. It is

possible that different diets are driving

the microbiome toward a similar state;

an alternative explanation is that a

limited set of metabolic capabilities in

the microbiome are transmitted from
one generation to the next, resulting in decreased overall func-

tionality with each successive generation, consistent with the

disappearing microbiota model.

This study has several limitations. Immigration-related micro-

biome changes are likely driven by a combination of diet and

other factors associated with adjustment to life in the United

States, and most of these factors were not examined in the

context of this study. These include changes in exposure to

stress, exercise, municipal drinking water, antibiotics, and treat-

ment with antiparasitics. In addition, our study design did not

allow us to test directly whether immigration causes the

observed changes in the microbiome nor whether changes in

microbiome are directly contributing to the high incidence of

obesity in US immigrants.

Ourfindingsdemonstrate thatUS immigration isassociatedwith

profoundperturbations to the gutmicrobiome, including lossof di-

versity, loss of native strains, loss of fiber degradation capability,

and shifts from Prevotella dominance to Bacteroides dominance.

These changes begin immediately upon arrival, continue over de-

cades of US residence, and are compounded in obese individuals

and in second-generation immigrants born in the United States.

These results improve our fundamental understanding of how
Cell 175, 962–972, November 1, 2018 969
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E F

Figure 7. Longitudinal Microbiome Variation during Relocation to the United States

(A–D) (A) Comparison of per-participant changes between first and last months of the study in BMI (paired t test, p = 8.33 10�05), (B) protein consumption (paired

t test, macronutrients adjusted for multiple comparisons using FDR < 0.05, p = 0.048), (C) dietary diversity (Faith’s PD) (paired t test, p = 0.017), and (D) Bac-

teroides-to-Prevotella ratios (paired t test, p = 0.0013).

(E)Bacteroides andPrevotella strain profiles aremostly stable after 6months. Samples (columns) from the same participant are denoted by color, andM1 andM6

correspond to month 1 sample and month 6 sample, respectively. Selected strains are identical to Figure 3B (at least 50% coverage per sample across n = 55

samples; see Table S5).

(F) Taxonomic area charts of relative abundances of dominant genera (other taxa not shown) in six individuals who began the longitudinal study while in a refugee

camp in Thailand and then continued after relocation to the United States. First available samples were collected 6 to 34 days before departure, and second

samples were collected 1 to 6 days after arrival to the United States.

See also Figure S7.
migration affects the human microbiome and underscore the

importance of considering the impact of the gut microbiome in

future research into immigrant and refugee health.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

16S rRNA gene and shotgun metagenomics

DNA sequencing data

European Nucleotide Archive Primary accession # PRJEB28687; RRID: SCR_006515

RefSeq version 87 O’Leary et al., 2016 ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria

Software and Algorithms

Custom analysis scripts This paper https://github.com/knights-lab/IMP_analyses

BURST DNA aligner Al-Ghalith and Knights, 2017 https://github.com/knights-lab/BURST

HUMAnN2 metabolic pathway annotation Abubucker et al., 2012 http://huttenhower.sph.harvard.edu/humann
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dan

Knights (dknights@umn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study setting, population, and recruitment
Our inclusion criteria included individuals who were Hmong or Karen, female, at least 18 years old, and either were born and are

currently living in Thailand, were born in Southeast Asia and moved to the U.S., or were born in the U.S. but whose parents were

born in Southeast Asia. Our inclusion criteria for controls included European American females at least 18 years of age who were

born in the U.S. and whose parents and grandparents were also born in the U.S. Our exclusion criteria consisted of use of any

antibiotics in the previous 6 months, current use of probiotic supplements, known presence of gastrointestinal, cancer, immunode-

ficiency or autoimmune disorders, adults lacking capacity to consent, or pregnancy. Additionally, control subjects could not have

traveled outside of the U.S. within the last 12 months. We recruited using multiple methods which included flyers, emails, social me-

dia, oral presentations, tabling, letters followed by phone calls toWest Side Community Health Services (West Side) patients whomet

criteria, and by word of mouth. We recruited throughout the Minneapolis-St. Paul metro area at local community centers, faith-based

organizations, adult education centers, health care centers, and health fairs. We recruited in Thailand at Khun Chang Khian (KCK), a

rural Hmong village located one hour fromChiang Mai city, as well as fromMae La (ML) Camp, a Burmese refugee camp in Tak prov-

ince located on the Myanmar-Thailand border (Figure S1). Interested subjects were then screened and interviewed privately or as a

group, as preferred by the participants. Interviews and body measurements were conducted by trained Hmong and Karen commu-

nity researchers and a graduate student researcher. This study was approved for human subject research by the University of

Minnesota Institutional Review Board (1510S79446), and the Thailand-based portion of the study was additionally approved for

human subject research by the Chiang Mai University Institutional Review Board (475/2015) and the Chiang Mai Public Health Office

(0032.002/9930). Informed consent was obtained from all subjects.

Community-based Research methods
This project used a community-based participatory action research (CBPAR) approach, with a multidisciplinary team composed of

academic researchers, Hmong and Karen community researchers, and staff from the Somali, Latino and Hmong Partnership for

Health and Wellness (SoLaHmo). SoLaHmo is a multi-ethnic, community-driven CBPAR program of West Side Community Health

Services, whosemission is to build upon the unique cultural strengths of ethnic communities to promote health and wellness through

research, education and policy. All SoLaHmo members are trained in qualitative research processes using a previously developed

training curriculum (Allen et al., 2011). In addition, all phases of our project were further guided by community advisory boards (CABs)

composed of Hmong and Karen health professionals and community experts. The study design, recruitmentmethods and strategies,

and dissemination of results were developed in partnership with both academic and community researchers, and through multiple

discussions with the CABs. As noted in Results, we learned from the Hmong CAB and research team members that substantially

more Hmong women than men were relocating to U.S. in recent years. Thus, to ensure feasibility of recruitment for this study we

limited our population to women. In Thailand, we used a modified CPBAR approach in that Thai community researchers were mem-

bers of the communities that we worked with, and were trained with qualitative research methods, recruitment, and sample and data

collection, but were not directly involved with study design. We note that Hmong refugee camps have long been closed (Bureau of
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Population, Refugees and Migration, 2004), hence Hmong in Khun Chang Khian are not refugees but serve as acceptable pre-

immigration representatives available for US-based Hmong.

Cross-sectional specimen and data collection
For U.S. sample collection, research team members obtained informed consent and conducted interviews in the participants’

preferred languages (English, Hmong, or Karen), and recorded participants’ responses onto an English paper survey. Weights

were measured using standard electronic scales, heights were measured against a wall using a pre-positioned measuring tape,

and waist circumferences were measured with a tape measure at the uppermost lateral border of the iliac crest (Center for Disease

Control, 2007). 24-hour dietary recalls were conducted using a multiple pass system (Tippett et al., 1999) with food models and

measuring cups and spoons for portion size estimations. Participants were provided with a stool collection kit and instructions

describing how to collect a stool sample. Stool samples were collected into preservative (see below) and were either returned to

the research staff by mail or were stored at room temperature for up to 5 days before they were collected by the research team.

Procedures for consent, interviews, anthropometrics, and stool sampling in Thailand were as described above for the cross-

sectional specimen and data collection. 24-hour dietary recalls and sample collections were conducted as described previously.

Stool samples from KCK were transported on dry ice then placed in a �20C freezer for 2 days then transferred to a �80C freezer.

Stool samples from ML were placed in a �20C freezer for up to 8 hours then transferred to a �80C freezer. All samples collected in

Thailand were shipped overnight on dry ice from Thailand to the U.S., and stored in a �80C freezer in the U.S.

Research teammembers instructedparticipants in stool collection, using an instructional video,written visual instructions, and verbal

reinforcement. Participants placed their stool sample onto a FecesCatcher (Tag Hemi VOF) and 1 g was collected using a sterile swab

into a 1.5 mL cryogenic tube pre-filled with 900 ul of RNALater and mixed thoroughly. Larger samples (longitudinal first and last month

samples) were collected using a Sarstedt 80.9924.014/CS500 tube and scoop without mixing or RNALater. Large samples collected in

the U.S. were aliquoted into 1.5 mL tubes with and without 50% glycerol upon arrival and stored at�80C. Large samples collected in

Thailandwerestoredat�80Cuntil arrival to theU.S., atwhichpoint theywere thawedover ice,aliquoted,andstored in thesamemanner.

Longitudinal specimen and data collection
Procedures for consent, interviews, anthropometrics, and stool sampling were as described above for the cross-sectional specimen

and data collection. Once permonth over sixmonths, 24-hour dietary recalls were conducted as described previously. Month 1 and 6

samples were stored in a home freezer and picked up within 24 hours of stool collection. These samples were transported with an ice

pack and immediately placed in a �80C freezer. Month 2-5 samples were stored in preservative (see below), mailed to the research

team in prepaid mailers at room temperature, and placed in a �80C freezer upon receipt.

METHOD DETAILS

Dietary data processing
De-identified survey data was entered into an electronic spreadsheet. Foods and portions from 24-hour dietary recalls were entered

into theUSDASuperTracker system (Britten, 2013). Foods that were not found in theUSDAdatabasewere studied individually (Speek

et al., 1991) formacronutrient content and entered in as custom foods. SuperTrackermacronutrient and food grouping summaries, as

well as foods and their respective portions were downloaded directly from the SuperTracker website or using custom Python (van

Rossum and Drake, 2011) scripts. Foods and portions were mapped to the SuperTracker and USDA databases to obtain respective

foodandportion identification numbers; foodandportion identification numberswereused in tree-based foodanalysis. Custom foods

not in the USDA database were manually assigned appropriate existing or new food identification numbers by group consensus. Mi-

cronutrients were excluded from dietary analyses due to the high number of custom foods with limited information onmicronutrients.

16S ribosomal RNA gene DNA sequencing
All fecal samples were submitted to the University of Minnesota Genomics Center (UMGC) for DNA extraction, amplification, and

sequencing. 16S ribosomal rRNA gene sequences were extracted and amplified following the UMGC-developed protocol (Gohl

et al., 2016).

Shotgun metagenomics DNA sequencing
Shotgun DNA sequencing was performed on the Illumina HiSeq platform. All fecal samples were submitted to the UMN Genomics

Center for DNA extraction, amplification, and sequencing. Amplification, quantification, and normalization of extracted DNAwas per-

formed using the Illumina NeoPrep Library System. A HiSeq 2x125 cycle v4 kit was used to sequence samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

16S sequencing analysis
We trimmed and processed all 16S marker-gene sequencing data for quality using SHI7 (Al-Ghalith et al., 2018) and picked de novo

operational-taxonomic units (OTUs) as follows. We first filtered for reads with at least 100 exact duplicates as representative
e2 Cell 175, 962–972.e1–e3, November 1, 2018



sequences, and assigned taxonomy by alignment at 0% to the NCBI RefSeq 16 s reference database (O’Leary et al., 2016) using the

BURST (Al-Ghalith and Knights, 2017) OTU-picking algorithm in CAPITALIST mode, which ensures optimal alignment of sequences

andminimizes the set of aligned reference genomes. All original sequenceswere then re-alignedwith BURST (Al-Ghalith andKnights,

2017) in CAPITALIST mode at 98% identity against this representative set, resulting in 93.54% of all available sequences aligned.

Singleton OTUs and samples with depth less than 2,143 were removed using the Quantitative Insights IntoMicrobial Ecology (QIIME)

software package (Caporaso et al., 2010). Using QIIME, we measured within-sample biodiversity (alpha diversity) with rarefied OTU

tables (at 2,143 sequences/sample) using whole-tree phylogenetic diversity (Faith, 1992) and a custom generated phylogeny con-

structed with the representative sequences using aKronyMer (Al-Ghalith and Knights, 2018). To quantify differences in composition

between subjects, we calculated the phylogeny-based UniFrac distance (Lozupone et al., 2011) between all pairs of samples. To

visualize between-subject differences (beta diversity) and to obtain principal components for subsequent statistical testing, we per-

formed dimensionality reduction using principal coordinates analysis (Caporaso et al., 2010). Aitchison’s distances were calculated

by first imputing zeros from an abundance OTU table, then applying a centered log ratio transform using the robCompositions R

package (Pawlowsky-Glahn and Buccianti, 2011). To enable tests for shifts in the relative abundances of Bacteroides and Prevotella,

we collapsed the reference-based OTUs according to taxonomy at the genus level. P values, sample numbers, and names of sta-

tistical tests are provided in the main text and figure legends for Figures 2A, 2B, 3A, 3C, 4A, 4B, 5A–5C, 6A–6C, and 7A–7D.

Shotgun metagenomics analysis
Shotgun metagenomics sequences were identified at the species level via genomic alignment against a custom database created

from aligning human samples from various public datasets against the comprehensive NCBI RefSeq database (Tatusova et al.,

2013) release 87, and all matched bacterial species, as well as all species in matched representative genera, were included. Genome

coverage estimates were calculated using the bcov utility from BURST (Al-Ghalith and Knights, 2017). Functional annotations were

obtained using the HUMAnN2 (Abubucker et al., 2012) pipeline with UniRef50 (Suzek et al., 2015). Resulting functional pathways

were mapped to and colored by the top-level categories of the MetaCyc (Caspi et al., 2008) ontology. CAZyme annotations were

obtained usingmetaSPAdes (Nurk et al., 2017), filtered for scaffolds withminimum1000 bp, then further processedwith Prokka (See-

mann, 2014), dbCAN (Yin et al., 2012) with E-value < 1e�5, and the CAZy database (Lombard et al., 2014). Taxonomic contributions

of differentiated glycoside hydrolases were identified as follows: (1) scaffolds that contributed to GH17, GH64, GH87 were identified

and respective DNA sequences were obtained and used as a reference database, (2) shotgun metagenomic reads were quality

filtered as described previously, (3) quality reads were aligned against the scaffold reference database using BURST (Al-Ghalith

and Knights, 2017) at 95% identity, (4) quality filtered reads from step 2 were aligned with BURST at 98% identity against the pre-

viously described custom database with taxonomy assigned from the NCBI database, (5) sequences that hit both the scaffolds refer-

ence and the custom NCBI-based reference were used to construct an OTU table.

Dietary data analysis
Food tree visualizations were generated with GraPhlAn (Asnicar et al., 2015). Dietary record and food item associations were gener-

ated using custom scripts, then visualized in Cytoscape (Shannon et al., 2003). Food-Microbiome Procrustes distance association

P values are from the ‘‘vegan’’ implementation in function ‘‘protest’’ with 999 permutations (performed for each of the permuted data

structures).

DATA AND SOFTWARE AVAILABILITY

Software
Software used to perform statistical testing and generate figures for this manuscript are available here: https://github.com/

knights-lab/IMP_analyses.

Data Resources
The 16S rRNA gene and shotgun metagenomic sequencing data have been deposited in the European Nucleotide Archive under

accession number PRJEB28687.
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Figure S1. Geographical Locations of Recruitment Sites in Thailand and Validation of Food Tree for Separating Immigrant Groups, Related to

Figure 1

(A) Khun Chang Khian in Chiang Mai province and Mae La camp in Tak Province.

(B) Principal coordinates analysis of tree-based unweighted UniFrac diet distances between Karen1st and Hmong1st (left) (Adonis F statistic = 43.85, p < 0.001)

and between Hmong1st and Hmong2nd (right) (Adonis F statistic = 13.05, p < 0.001), showing the ability of the method to discriminate between these immigrant

groups.
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Figure S2. Alpha Diversity Boxplots of Obese and Lean Individuals Separated by Ethnicity and Prevalence-Abundance Analysis, Related to

Figure 2

(A) Post hoc analysis with Tukey’s HSD test across sample groups (p < 0.01).

(B) Prevalence-abundance curves comparing the fourBacteroides (top) and four Prevotella (bottom) strains with the largest change in overall prevalence between

Hmong1st and HmongThai.
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Figure S3. Functional Annotations and Glycoside Hydrolase Taxonomic Contributions, Related to Figure 3

(A) Differentiated relative abundances of functional pathways between HmongThai and Hmong1st (asin-sqrt transformed abundances, ANOVA, FDR-corrected

q < 0.10).

(B) Taxonomic contributions of scaffolds contributing to beta-glucan-targeting glycoside hydrolases.
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Figure S4. Macronutrient Pairwise Comparisons, Related to Figure 4

Pairwise comparisons with Tukeys’ HSD, significant p values < 0.01 are shown.
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Figure S5. Bipartite Network of Participant Dietary Records and Food Items, Related to Figure 4

(A) Edges and participants are colored by sample group, and food items are shown as white-filled diamonds.

(B) We highlight the high prevalence of rice consumption. Participants who consumed rice are denoted as yellow nodes and yellow edges connected to the

centroid (rice), otherwise participants were colored by sample group.

(C) Procrustes permutation shows significant relatedness between individuals’ food and microbiome profiles. Procrustes PCoA for a representative permutation

(median of 9) and the original data (left), and a boxplot of distances between each individuals’ food and microbiome data in the original and permuted data after

Procrustes rotation (distances are smaller in original data, Mann Whitney U test p = 1e-10).
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Figure S6. Bipartite Network of Participant Dietary Records and Food Items, Related to Figure 6

(A) Scatterplot of overall microbiome similarity (1 / Aitchison distance) of European Americans to the HmongThai reference group against Age with best-fit line

(linear regression Age p = 0.57).

(B) Scatterplot of years in U.S. against Age in Hmong1st, colored byBacteroides-Prevotella ratio. Years in U.S. was significantly associated with the B-P ratio in a

multiple linear regression (p = 0.0094) while Age was not (p = 0.065).
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Figure S7. PCoA of Unweighted UniFrac Distances of Longitudinal Samples, Related to Figure 7

(A) First and last month samples are highlighted and connected by participant, with all intermediate monthly samples in gray. Inset shows the within-individual

changes along PC1 and PC2 from first to last months (one sample t test, PC1 p = 0.023, PC2 p = 0.35).

(B) Boxplot of tree-based dietary diversity by study group.
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