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The 6.10-Mb genome sequence of the aerobic chitin-digesting gliding bacterium Flavobacterium johnsoniae
(phylum Bacteroidetes) is presented. F. johnsoniae is a model organism for studies of bacteroidete gliding
motility, gene regulation, and biochemistry. The mechanism of F. johnsoniae gliding is novel, and genome
analysis confirms that it does not involve well-studied motility organelles, such as flagella or type IV pili. The
motility machinery is composed of Gld proteins in the cell envelope that are thought to comprise the “motor”
and SprB, which is thought to function as a cell surface adhesin that is propelled by the motor. Analysis of the
genome identified genes related to sprB that may encode alternative adhesins used for movement over different
surfaces. Comparative genome analysis revealed that some of the gld and spr genes are found in nongliding
bacteroidetes and may encode components of a novel protein secretion system. F. johnsoniae digests proteins,
and 125 predicted peptidases were identified. F. johnsoniae also digests numerous polysaccharides, and 138
glycoside hydrolases, 9 polysaccharide lyases, and 17 carbohydrate esterases were predicted. The unexpected
ability of F. johnsoniae to digest hemicelluloses, such as xylans, mannans, and xyloglucans, was predicted based
on the genome analysis and confirmed experimentally. Numerous predicted cell surface proteins related to
Bacteroides thetaiotaomicron SusC and SusD, which are likely involved in binding of oligosaccharides and
transport across the outer membrane, were also identified. Genes required for synthesis of the novel outer
membrane flexirubin pigments were identified by a combination of genome analysis and genetic experiments.
Genes predicted to encode components of a multienzyme nonribosomal peptide synthetase were identified, as
were novel aspects of gene regulation. The availability of techniques for genetic manipulation allows rapid
exploration of the features identified for the polysaccharide-digesting gliding bacteroidete F. johnsoniae.

Flavobacterium johnsoniae (formerly Cytophaga johnsonae)
is a member of the large and diverse phylum of gram-negative
bacteria known as the Bacteroidetes. Members of this group of
organisms have a number of unique characteristics that distin-
guish them from other bacteria. Some have novel cell surface
machinery to utilize polysaccharides (85, 95, 96). Rapid gliding
motility over surfaces is also common among these bacteria
(59), as are unusual outer membrane sulfonolipids (29) and
flexirubin pigments (78). Bacteroidete gene expression and
regulation also have novel aspects (10, 11, 20, 39, 92). The
many unusual features of these common but understudied

bacteria provide numerous avenues for further exploration,
which can be greatly aided by analysis of genome sequences.

F. johnsoniae digests many polysaccharides and proteins, but
it is best known for its ability to rapidly digest insoluble chitin
(87). Chitin is one of the most abundant biopolymers on earth
(63). F. johnsoniae and other members of the Bacteroidetes
phylum are thought to play important roles in the turnover of
this compound in many environments (47). F. johnsoniae has
become a model system for the study of bacteroidete gliding
motility biochemistry and molecular biology (20, 27–29, 59,
72). This paper highlights novel features of the F. johnsoniae
genome, with particular emphasis on genes and proteins likely
to be involved in polysaccharide utilization, gliding motility,
and the novel biochemistry of this organism.

MATERIALS AND METHODS

Sequencing of the F. johnsoniae genome. The random shotgun method was
used to sequence the genome of F. johnsoniae UW101 (ATCC 17061). Large-
insert (40-kb), medium-insert (8-kb), and small-insert (3-kb) random libraries
were partially sequenced, and sequences were assembled with parallel phrap
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(High Performance Software, LLC). Possible misassemblies were corrected with
Dupfinisher (30) or by analysis of transposon insertions in bridge clones. Gaps
between contigs were closed by editing, custom primer walking, or PCR ampli-
fication.

Annotation. Gene predictions were obtained using Glimmer (23), and tRNAs
were identified using tRNAScan-SE (53). Basic analyses of the gene predictions
were performed by comparing coding sequences with the PFam, BLOCKS, and
Prodom databases. Protein localizations were predicted with PSORTb (26), and
lipoproteins were identified using LipoP (42). A team of annotators added gene
definitions and functional classes using BLAST results and information from the
Pfam (http://pfam.janelia.org/index.html) (86), BLOCKS (33), Prodom (84), and
SMART (82) databases. Metabolic pathways were constructed using MetaCyc as
a reference data set (17). Genes encoding candidate glycoside hydrolases, poly-
saccharide lyases, and carbohydrate esterases were detected with routines used
for updates of the Carbohydrate Active Enzyme database (16) at http://www.cazy
.org. Because sequence-based families of carbohydrate-active enzymes contain
enzymes with various substrate specificities, functional annotation was guided by
the distance between the protein model and biochemically characterized en-
zymes. As a result, members of a particular family do not necessarily have the
same predicted function. Information regarding predicted peptidases of F.
johnsoniae was obtained from the MEROPS peptidase database (76) at http:
//merops.sanger.ac.uk/. Putative susC-like and susD-like genes were identified as
previously described (97) using an iterative amino acid BLAST search that
initially used the starch-binding SusC and SusD sequences from Bacteroides
thetaiotaomicron. Detailed information about the genome properties and ge-
nome annotation can be obtained from the JGI Integrated Microbial Genomes
website (54) at http://img.jgi.doe.gov/pub/main.cgi.

Utilization of carbohydrates. To asses growth on different carbohydrates, F.
johnsoniae was cultured in SD minimal medium (18) containing individual sub-
strates as sole carbon sources at a concentration of 5 mg/ml, except for rham-
nogalacturonan I, which was used at a concentration of 10 mg/ml. Monosaccha-
rides and disaccharides were sterilized by filtration (pore size, 0.22 �m), and
polysaccharides were sterilized by autoclaving them in distilled water as 2�
stocks. Carbohydrates (75 �l of each stock) were arrayed in quadruplicate in a
96-well microtiter plate. F. johnsoniae cells were cultured overnight in CYE
medium, and 10 ml was collected by centrifugation, washed once in 2� SD
medium that did not contain any carbohydrate, suspended in 10 ml of 2�
concentrated SD medium, and diluted 100-fold in 2� SD medium. Seventy-five
microliters of the resulting cell suspension was added to each well of the 96-well
plate containing the carbohydrate stocks. Plates were incubated at 22°C, and the
growth in each well was measured by determining the absorbance at 600 nm at
5-min intervals for 88 h.

Analysis of genes involved in flexirubin synthesis. A 450-bp internal fragment
of Fjoh_1102, a homolog of Pseudomonas aurantiaca darB, was amplified from
chromosomal DNA using primer 834 (5�-GCTAGGGATCCACAAGCCGTTA
TTACGCTGTTGAC-3�) and primer 833 (5�-GCTAGCTGCAGAAATGCAC
CGGCACCGTCAGATAA-3�), which were designed with engineered BamHI
and PstI restriction sites, respectively. The product was inserted into pCR2.1
using an original TA cloning kit according to the manufacturer’s instructions
(Invitrogen) to generate pRR07. pRR07 was digested with BamHI and PstI, and
the internal fragment of Fjoh_1102 was introduced into the suicide vector
pLYL03 (50) that had been digested with the same enzymes to generate pRR08.
pRR08 was introduced into F. johnsoniae by triparental conjugation, and eryth-
romycin-resistant colonies were obtained. Disruption of Fjoh_1102 was con-
firmed by PCR using primer 838 (5�-CCTTCTAATCCTTTAGATCGCGGGC
A-3�), which is 1,012 bp upstream of the Fjoh_1102 translation start site, and
primer 737 (5�-AGGCACCCCAGGCTTTACACT-3�), which is specific for the
suicide vector pLYL03.

A library of wild-type genomic fragments in cosmid pCP22 (37) was con-
structed to identify additional genes involved in flexirubin synthesis. Chromo-
somal DNA was partially digested with EcoRI, and fragments were ligated into
pCP22, packaged in lambda phage particles (MaxPlax; Epicentre Technologies,
Madison, WI), and introduced into Escherichia coli DH5�MCR. Cosmid DNA
from approximately 10,000 colonies was transferred to the flexirubin-negative
mutant F. johnsoniae UW102-154 by triparental conjugation essentially as pre-
viously described (37), except that transconjugants were plated on CYE medium
with 100 �g/ml erythromycin. Colonies were screened for pigmentation after 2
days of incubation at 30°C. A pigmented flexirubin-positive colony was isolated,
and plasmid pMM340, which carries a 12.8-kbp region spanning Fjoh_1078 to
Fjoh_1089, was obtained.

Colonies were tested for the presence of flexirubin pigments by exposing them
to 50 �l 10 N KOH, which resulted in a change from yellow to red if flexirubin

pigments were present, followed by neutralization with 42 �l 12 N HCl, which
resulted in a return to yellow pigmentation.

Nucleotide sequence accession number. The genome sequence of F.
johnsoniae has been deposited in the GenBank database under accession number
CP000685.

RESULTS AND DISCUSSION

General genome features. The F. johnsoniae genome con-
sists of a single circular 6,096,872-bp chromosome with a G�C
content of 34.11% (Fig. 1). It is one of the largest sequenced
bacteroidete genomes and is more than twice as large as the
genome of the other sequenced member of the genus Fla-
vobacterium, the fish pathogen Flavobacterium psychrophilum
(24). Six rRNA operons were identified, and 5,056 protein-
encoding genes were predicted. The GC skew allowed predic-
tion of the site of the origin of replication near nucleotide
3322321. Alignment of conserved genomic sequences of F.
johnsoniae and F. psychrophilum with MAUVE revealed a
4.17-Mbp region between 5.43 Mbp and 3.5 Mbp that con-
tained most of the conserved sequences (see Fig. S1 in the
supplemental material). Not surprisingly, this region harbors
most of the genes involved in central energy-generating me-
tabolism (glycolysis, tricarboxylic acid cycle, oxidative phos-
phorylation) and the core information-processing genes in-
volved in transcription and translation (Fig. 1). The remaining
1.93 Mbp of the genome harbors several transposon islands
and a large number of genes encoding hypothetical proteins of
unknown function. This region is also enriched for genes pre-
dicted to be involved in polysaccharide utilization, and 45% of

FIG. 1. Map of the F. johnsoniae genome. The innermost circle
(circle 1) shows the GC skew [(G � C)/(G � C)] (yellow-green, values
more than 1; purple, values less than 1). Circle 2 shows the G�C
content. Circle 3 indicates the backbone ring. Circle 4 shows rRNA
(black) and tRNA (red). Circle 5 shows core protein-encoding genes,
including genes encoding ribosomal proteins (black), aminoacyl tRNA
synthetases (red), enzymes involved in glycolysis, the tricarboxylic acid
cycle, oxidative phosphorylation, and synthesis of electron transport
chain menaquinones (green), and the RNA polymerase core (teal).
Circle 6 shows motility genes (blue). Circle 7 shows transposon islands
(pink). The outermost circle (circle 8) shows a ruler, and the numbers
indicate Mbp of sequence.
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the predicted glycoside hydrolases and 67% of the polysaccha-
ride lyases are encoded by genes in this region.

Polysaccharide utilization. F. johnsoniae utilizes a variety
of polysaccharides as nutrients. Analysis of the genome
identified 138 predicted glycoside hydrolases and nine pre-
dicted polysaccharide lyases. F. johnsoniae was originally
described as a chitinolytic bacterium (87), and analysis of
the genome sequence identified genes encoding possible
chitinolytic enzymes. These enzymes include five chitinases
that cut the long chitin polymers and five �-N-acetylglu-
cosaminidases that release N-acetylglucosamine and/or chito-
biose from the oligomers (Table 1). The predicted chitinases
are diverse and include enzymes that are related to chitinases
of bacteria (Fjoh_4175, Fjoh_4555, Fjoh_4757), animals
(Fjoh_4560), and plants (Fjoh_2608). Other predicted en-
zymes that may be involved in chitin utilization include an
N-acetylglucosamine kinase (Fjoh_4589) related to mouse
NagK (34), an N-acetylglucosamine-6-phosphate deacetylase
(Fjoh_3974) related to Vibrio cholerae NagA (98), and four
glucosamine-6-phosphate isomerases/deaminases (Fjoh_2029,
Fjoh_2381, Fjoh_4812, Fjoh_4557) related to E. coli NagB
(79). NagK, NagA, and NagB are predicted to function in
sequence to convert N-acetylglucosamine into fructose-6-phos-
phate for entry into the Embden-Meyerhof-Parnas pathway.

In addition to genes predicted to be involved in chitin utili-
zation, F. johnsoniae also has genes predicted to encode nu-
merous glycohydrolases, polysaccharide lyases, and esterases
that are likely involved in the digestion of other polysaccha-
rides (see Tables S1, S2, and S3 in the supplemental material).
It appears to have an arsenal of enzymes for digestion of plant
cell wall polysaccharides, which may explain the prevalence of
this organism in soil and rhizosphere habitats (71, 87). F.
johnsoniae is known to digest pectin, and glycohydrolases,
lyases, and esterases likely to be involved in this process were
identified (see Tables S1, S2, and S3 and Fig. S2 in the sup-
plemental material). Many genes predicted to encode glycohy-
drolases and esterases that could be involved in utilization of
plant cell wall hemicelluloses, such as xylans (�-1,4-linked poly-
mers of xylose often substituted with acetyl, arabinofuranoside,
and glucuronosyl residues), mannans (heteropolysaccharides
containing �-1,4-linked mannose residues), and xyloglucans
(�-1,4-linked polymers of glucose substituted with xylose and
other sugars), were also identified (see Tables S1 and S3 and
Fig. S2 in the supplemental material). Candidate xylanases,
�-xylosidases, arabinofuranosidases, glucuronidases, and car-
bohydrate esterases involved in xylan digestion, candidate
�-mannanases and �-mannosidases involved in mannan diges-
tion, and candidate �-glucosidases and �-glycosidases and an

TABLE 1. Predicted F. johnsoniae glycohydrolases involved in chitin digestion

Gene Predicted functiona Homologsb Predicted localizationc
Molecular

mass
(kDa)d

Enzymatic and
other domainse

Fjoh_0674 Candidate �-N-acetylglucosaminidase P. gingivalis NahA (38% identity over
774 amino acids �52	)

Periplasmic 87.6 GH20

Fjoh_2039 Candidate �-N-acetylglucosaminidase P. gingivalis NahA (40% identity over
610 amino acids �52	)

Periplasmic 87.3 GH20

Fjoh_2118 Candidate �-glycosidase, related to
N-acetylglucosaminidases

Pseudoalteromonas piscicida Cht60
(30% identity over 389 amino
acids �91	)

Cytoplasmic 59.9 GH3

Fjoh_2608 Distantly related to plant chitinases Solanum tuberosum (potato) CHTB2
endochitinase 2 (24% identity over
231 amino acids �12	)

Unknown 90.8 GH19

Fjoh_4175 Candidate chitinase Bacillus circulans ChiA1 (26%
identity over 317 amino acids �94	)

Unknown 57.8 GH18-CBM6-D5

Fjoh_4555 Candidate chitinase B. circulans ChiA1 (33% identity
over 513 amino acids �94	),
B. circulans ChiD (37% identity
over 353 amino acids �93	)

Outer membrane or
extracellular

168.9 GH18-GH18

Fjoh_4556 Candidate �-N-acetylglucosaminidase P. gingivalis NahA (36% identity over
447 amino acids �52	)

Periplasmic 77.3 GH20

Fjoh_4560 Candidate chitinase Bos taurus (bovine) ChiA (25%
identity over 244 amino acids �89	)

Lipoprotein 38.1 GH18

Fjoh_4757 Candidate chitinase B. circulans ChiA1 (37% identity
over 298 amino acids �94	)

Unknown, not
cytoplasmic

41.2 GH18

Fjoh_4808 Candidate �-N-acetylglucosaminidase P. gingivalis NahA (32% identity over
633 amino acids �52	)

Periplasmic 94.8 GH20

a Predicted functions were assigned by routines used for updating the Carbohydrate Active Enzymes database (http://www.cazy.org/) using the following criteria:
typically, 70% or greater amino acid identity with a protein domain with a biochemically determined function at the time of analysis resulted in “candidate” status; 30%
to 70% amino acid identity with a protein domain with a known function resulted in “related to” status; and less than 30% amino acid identity with a protein domain
with a known function resulted in “distantly related to” status. Because the threshold of similarity that correlates with a change of substrate specificity is variable from
one glycoside hydrolase family to another, the criteria were tightened or loosened appropriately for several families. All analyses were conducted domain by domain
to avoid problems arising from the modular structure of many of the proteins.

b Homologs were identified by a BlastP search with the Swiss-Prot database. Fjoh_4555 has two catalytic domains, so a homolog for each domain is listed. ChiA1
is similar to the N-terminal GH18 domain, and ChiD is similar to the C-terminal GH18 domain. The numbers in brackets are reference numbers.

c Localization was predicted using the default settings of PSORTb (26). Predicted lipoproteins were identified using LipoP (42).
d Predicted molecular mass of the primary product of translation, including any predicted signal peptide.
e CBM6, family 6 CBM, as assigned by CAZY; D5, carboxy-terminal domain of R. marinus xylanases predicted to be involved in attachment to the cell surface (43);

GH, glycoside hydrolase as assigned by CAZY (the numbers indicate families).
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endoglucanase that could be involved in xyloglucan digestion
were identified. Digestion of hemicelluloses has not been re-
ported previously for F. johnsoniae. We tested growth of F.
johnsoniae on a battery of carbohydrates and determined that
it grows on many hemicellulosic substrates (Table 2). The
highest growth rates were observed with three polysaccharides:
glucomannan, polygalacturonate, and laminarin. F. johnsoniae
also utilized the major monosaccharides in these glycans (man-
nose, galacturonic acid, and glucose, respectively), but the
growth rates were lower. A similar phenomenon has been
observed for B. thetaiotaomicron, which grows more rapidly on
�-glucans, such as pullulan and dextran, than on monomeric
glucose (49). F. johnsoniae does not utilize crystalline cellulose
as a carbon and energy source, but its genome contains genes
that encode a predicted endoglucanase (Fjoh_4946) and six
�-glucosidases (Fjoh_1567, Fjoh_3392, Fjoh_3521, Fjoh_3861,
Fjoh_4857, Fjoh_4963) (see Table S1 in the supplemental ma-
terial). These enzymes may be involved in utilization of glu-
cose-containing hemicelluloses, such as xyloglucans, and the
�-1,3-glucan laminarin, or they may allow partial digestion of
cellulose. The �-glucosidases also likely account for the ability
of F. johnsoniae to utilize cellobiose and cellohexaose (Table 2)
(21). F. johnsoniae is also known to utilize starch (21, 87) and
dextran (40), and genes encoding candidate enzymes involved
in the utilization of these polysaccharides were identified (Fig.
2; see Fig. S2 and Table S1 in the supplemental material).
Carbohydrate-binding modules (CBMs) are present in 11 of

the 138 glycohydrolases and in seven additional proteins that
do not have obvious catalytic domains (Fjoh_0913, Fjoh_1470,
Fjoh_1765, Fjoh_2035, Fjoh_2869, Fjoh_3324, Fjoh_4174).
Most of the potential polysaccharide utilization proteins are
predicted to be extracytoplasmic, and 11 of them have carboxy-
terminal domains that are similar to the “D5” domains of
Rhodothermus marinus cell-associated xylanolytic enzymes
(43). The R. marinus D5 domains have been postulated to be
involved in attachment to the cell surface. One cluster of four
genes (Fjoh_4174 to Fjoh_4177) has a high density of CBMs
and D5 domains. The proteins encoded by these genes account
for 6 of the 21 CBMs identified and 4 of the 11 D5 domains.
The function of this cluster is not known, but it encodes a
candidate chitinase, two possible �-1,3-glucanases, and a pro-
tein that lacks an obvious catalytic domain but contains two
CBMs and a D5 domain.

Other predicted proteins that may be involved in polysac-
charide utilization include proteins with similarity to the B.
thetaiotaomicron outer membrane starch utilization proteins
SusC and SusD. B. thetaiotaomicron is an anaerobic inhabitant
of the human large intestine and is a distant relative of F.
johnsoniae. The B. thetaiotaomicron polysaccharide-degrading
enzymes are primarily cell associated (6, 81). The outer mem-
brane lipoprotein SusD and the outer membrane protein SusC
are involved in binding starch on the cell surface and in trans-
port of oligomers across the outer membrane. Homologs of
SusC and SusD are common in the phylum Bacteroidetes (31).

TABLE 2. Growth of F. johnsoniae on various carbohydrates

Substratea Substrate type Relative growth
rateb

D-Glucose Monosaccharide 1.0 (0.2)
D-Fructose Monosaccharide 0.9 (0.1)
D-Galactose Monosaccharide 0.7 (0.1)
D-Mannose Monosaccharide 

D-Xylose Monosaccharide 1.2 (0.2)
D-Galacturonic acid Monosaccharide 0.5 (0.1)
D-Glucosamine Monosaccharide 0.6 (0.1)
N-Acetylglucosamine Monosaccharide 

Cellobiose Disaccharide 1.0 (0.1)
Cellohexaose Hexasaccharide 

Pullulan Linear water-soluble polymer of glucose with �-1,4 and �-1,6 glycosidic bonds 0.6 (0.1)
Laminarin (brown algae) Linear polymer of glucose with �-1,3 and �-1,6 glycosidic bonds 1.3 (0.1)
Amylopectin (potato) Insoluble component of plant starch; branched polymer of glucose with �-1,4

and �-1,6 glycosidic bonds
�

Dextran (from L. mesenteroides) Branched polymer of glucose with primarily �-1,6 and �-1,4 glycosidic bonds 0.8 (0.1)
Polygalacturonate (citrus peel) Pectic polysaccharide 1.5 (0.1)
Arabinoxylan (wheat) Hemicellulosic polysaccharide �
�-Glucan (barley) Hemicellulosic polysaccharide �
Methyl glucuronyl xylan Hemicellulosic polysaccharide 

Xylan (oat spelt, water-soluble fraction) Hemicellulosic polysaccharide 0.7 (0.1)
Xyloglucan (tamarind) Hemicellulosic polysaccharide 0.8 (0.1)
Galactomannan (carob) Hemicellulosic polysaccharide 1.2 (0.1)
Glucomannan (konjac) Hemicellulosic polysaccharide 1.9 (0.4)

a All carbohydrates were used at a concentration of 5 mg ml�1 in SD minimal medium, except for rhamnogalacturonan I, which was used at a concentration of 10
mg ml�1. The following carbohydrates did not support growth: D-arabinose, L-fucose, ribose, D-glucuronic acid, N-acetylgalactosamine, L-rhamnose, sucrose, lactose,
carboxymethyl cellulose, �-mannan (Saccharomyces cerevisiae), �-arabinan (sugar beet), arabinogalactan (larch), inulin (chicory), �-1,4-galactan (potato and lupin),
�-carrageenan (seaweed), levan (Erwinia herbicola), rhamnogalacturonan I (potato pectin), RNA, DNA (salmon sperm), and xanthan gum. The sources of some of the
polysaccharides are indicated in parentheses.

b Relative growth rates were determined by dividing the doubling time (in min) in SD medium plus glucose by the doubling time in SD plus the test substrate. Thus,
a relative growth rate greater than 1 for a substrate indicates that growth on the substrate was more rapid than growth on glucose. Each substrate was tested in
quadruplicate, and standard deviations are indicated in parentheses. 
, cells grew too slowly to calculate the relative growth rate, but the optical density at 600 nm was
at least 0.1 after 88 h of incubation; �, cells grew on the substrate, but the growth rate could not be determined accurately due to the high turbidity of the initial growth
medium containing the insoluble polysaccharide.
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Analysis of the F. johnsoniae genome revealed the presence of
44 susC-like genes and 42 susD-like genes (see Table S4 in the
supplemental material). Each of the susD-like genes was lo-
cated immediately downstream of a susC-like gene. In many
cases the genes adjacent to the susC-like and susD-like genes

are predicted to be involved in polysaccharide utilization (Fig.
2; see Fig. S2 in the supplemental material). In Bacteroides
species such regions have been referred to as polysaccharide
utilization loci (PULs) (13). The SusC-like and SusD-like pro-
teins are likely involved in binding and uptake of the polysac-

FIG. 2. Representative PULs of F. johnsoniae. (A) Putative starch utilization PUL with components that are similar to those of the prototypic
starch utilization system (Sus) of B. thetaiotaomicron. Like the prototypic Sus system, this system includes two GH13 �-amylases, one of which has
a lipidation signal similar to the endo-acting surface enzyme SusG (light blue), and a single GH97 �-glucosidase. Notably, this system lacks a
homolog of the inner-membrane-spanning maltose sensor, SusR, and instead is linked to an extracytoplasmic function sigma (ECF-�)–anti-�
transcriptional regulator pair (green and red, respectively). These regulatory elements function by coupling to a specialized N-terminal “trans-
ducing domain” (pink) attached to the SusC-like transporter and together comprise a “transenvelope signaling” pathway spanning both bacterial
membranes. (B) Putative chitin utilization PUL. In contrast to the system shown in panel A, this system includes three glycoside hydrolases
predicted to target the �-1,4-N-acetylglucosamine linkages found in chitin (GH18 and GH20 enzymes). One of these enzymes has a secretion signal
predicted to position it on the cell surface or in the extracellular space (light blue). Unlike other PULs in other bacteroidetes delineated so far,
the chitin utilization PUL is associated with a classic two-component regulatory system (dark pink). Other functional labels for each system’s
schematic diagram are indicated at the bottom. (C) Representative PULs with predicted roles in hemicellulose utilization (see Fig. S2 in the
supplemental material for a more complete list). OM, outer membrane; IM, inner membrane; TCS, two-component regulatory system; HTCS,
hybrid two-component regulatory system.
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charide substrates that are attacked by the products of the
neighboring genes. The SusC-like proteins are part of a larger
family of TonB receptor-like proteins. In addition to the SusC-
like proteins, 50 other TonB receptor-like proteins were iden-
tified using the genome information. Some of these proteins
are predicted to function in Fe uptake, but the roles of the
others are not known.

The SusC-like and SusD-like proteins that have been studied
are involved in the utilization of soluble polysaccharides (56,
77). Analysis of the F. johnsoniae genome suggests that some
SusC-like and SusD-like proteins may also function in utiliza-
tion of insoluble polysaccharides, such as chitin and hemicel-
luloses. The region from Fjoh_4555 to Fjoh_4564 is likely to be
involved in chitin utilization (Table 1 and Fig. 2). It contains
genes encoding several candidate chitinases (Fjoh_4555, Fjoh_4560),
a candidate 1,4-�-N-acetylglucosaminidase (Fjoh_4556), a glu-
cosamine-6-phosphate isomerase/deaminase (Fjoh_4557), two
SusC-like proteins (Fjoh_4559, Fjoh_4562), and two SusD-like
proteins (Fjoh_4558, Fjoh_4561). The 1,4-�-N-acetylglu-
cosaminidases thought to be involved in chitin digestion are all
predicted to be periplasmic or cytoplasmic enzymes (Table 1),
suggesting that chitin oligomers are transported across the
outer membrane before digestion, as expected if SusC-like and
SusD-like proteins are involved in chitin utilization. This sug-
gests a model for chitin utilization in which cell surface pro-
teins bind chitin and perform the initial digestion to form
soluble oligomers that are transported into the periplasm
for further digestion by 1,4-�-N-acetylglucosaminidases.
This model may explain why intimate contact with insoluble
chitin is needed for efficient utilization (61, 88). This strategy
may also be used by F. johnsoniae for digestion of hemicellu-
loses, and it may be used by other bacteroidetes that digest
insoluble substrates. For example, Cytophaga hutchinsonii has
SusC-like and SusD-like proteins that may be involved in uti-
lization of insoluble cellulose (95).

Proteases. Casein, gelatin, and other proteins are digested
by F. johnsoniae and can serve as sole C, N, and energy sources
(19, 21, 87). The MEROPS peptidase database recognized 124
predicted F. johnsoniae peptidases (see Table S5 in the sup-
plemental material) and another 35 “nonpeptidase homolog”
proteins that exhibit sequence similarity to peptidases but
appear to lack residues critical for activity. The number of
predicted peptidases is greater than that for any other member
of the Bacteroidetes with a completed genome sequence. In
addition to peptidases identified by MEROPS, F. johnsoniae
has one additional predicted peptidase (Fjoh_0798), a ho-
molog of the F. psychrophilum protease Fpp1 (83) that is not
currently included in the MEROPS database. Ten of the pre-
dicted peptidase-encoding genes listed in Table S5 in the sup-
plemental material are located near susC-like genes (see Fig.
S2 in the supplemental material; data not shown). For eight of
these genes, genes encoding obvious polysaccharide utilization
proteins have not been found nearby, raising the possibility
that these susC-like genes may function in protein utilization
rather than in polysaccharide utilization. Proteases of the
pathogenic bacteroidetes Porphyromonas gingivalis and F. psy-
chrophilum have been suggested to play important roles in
virulence (24, 69). F. johnsoniae has homologs of several of the
extracellular proteases of these organisms, but it lacks ho-

mologs of the P. gingivalis gingipain proteases, which have been
most clearly associated with virulence.

Protein export and secretion. As mentioned above, extracel-
lular and cell surface proteins appear to be involved in polymer
digestion by F. johnsonaie. Export of proteins across the cyto-
plasmic membrane is apparently mediated by SecA, SecE,
SecY, SecDF, SecG, YidC, and YajC of the Sec system and
TatA and TatC of the twin-arginine transport system. Several
systems are available to mediate secretion of proteins across
the outer membrane. Components of an apparent type II se-
cretion system (GspD, GspE, GspF, GspG, and GspJ) are
present. In addition, multiple copies of type IV secretion sys-
tem genes encoding proteins related to VirB4 and VirD4 are
also present and are associated with apparent conjugative
transposons. These proteins may be involved in translocation
of DNA and/or proteins. Possible ATP-binding cassette trans-
porters that may transport specific proteins (type I transport)
were also identified. Finally, F. johnsoniae has predicted com-
ponents of a proposed bacteroidete-specific protein secretion
system (K. Sato, M. Naito, H. Yukitake, H. Hirakawa, M.
Shoji, M. J. McBride, R. G. Rhodes, and K. Nakayama, sub-
mitted for publication). This system, which is required for cell
movement, is discussed below. The F. johnsoniae genome is
predicted to encode 423 lipoproteins (8.37% of all proteins), as
well as machinery for their processing (Lgt, LspA) and trans-
location (LolA).

Central metabolism and biosynthetic capabilities. F. johnsoniae
carries out aerobic respiration of glucose, and genome analysis
indicated the presence of a complete Embden-Meyerhof-Par-
nas pathway and a tricarboxylic acid cycle. Genes encoding
each of the NADH dehydrogenase subunits, cytochrome c,
cytochrome c oxidase, and components of ATP synthase were
also present. F. johnsoniae uses menaquinones instead of
ubiquinones as respiratory electron transport chain compo-
nents, and genes encoding the enzymes for menaquinone syn-
thesis were identified. F. johnsoniae does not have genes en-
coding the components of the bc1 complex (also known as
complex III) that functions as a quinol:cytochrome c oxi-
doreductase in many aerobes. Instead, F. johnsoniae has genes
encoding components of an alternative complex III that is
thought to function as a menaquinol:cytochrome c oxidoreduc-
tase. The components of this complex were recently recognized
in the distantly related bacteroidete R. marinus and in the
photosynthetic bacterium Chloroflexus aurantiacus (70, 99). In-
volvement of menaquinones and replacement of the bc1 com-
plex with the novel menaquinol oxidoreductase appear to be
universal among aerobic bacteroidetes for which genome se-
quence data are available, including F. johnsoniae, F. psy-
chrophilum, Gramella forsetii, C. hutchinsonii, and R. marinus.
Some apparent metabolic abilities of F. johnsoniae were not
anticipated. For example, unlike most other bacteroidetes, this
species has a cluster of genes (Fjoh_3902 to Fjoh_3913) pre-
dicted to encode a nickel-dependent uptake hydrogenase com-
plex and accessory proteins for maturation of the enzyme. The
role of this hydrogenase complex in the energy metabolism of
this aerobic respiratory heterotrophic bacterium is not yet
clear. F. johnsoniae grows on minimal media with glucose as a
sole carbon and energy source and thus has the ability to
synthesize all of its organic components from this substrate. As
expected, analysis of the genome sequence revealed genes en-
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coding biosynthetic enzymes needed to synthesize amino acids,
nucleotides, fatty acids, heme, and many vitamins and coen-
zymes.

Novel outer membrane lipids and secondary metabolites.
Many gliding bacteroidetes contain novel components in
their outer membranes. These components include sulfono-
lipids, which may give the membrane increased fluidity and
be important for gliding (1), and flexirubin pigments (3).
Flexirubin pigments are found in many bacteroidetes, in-
cluding F. johnsoniae, F. psychrophilum, and C. hutchinsonii,
for which complete genome sequences are available. Flexiru-
bin pigments typically consist of an 
-phenyloctaenic acid
chromophore esterified with resorcinol carrying two hydrocar-
bon chains (Fig. 3). Variations in the length of the polyenic
acid, variations in the R group hydrocarbon chains, and sub-
stitutions on the phenyl rings result in production of a variety
of different flexirubin pigments. A single strain of F. johnsoniae
was reported to produce 25 different flexirubin pigments (2).
Flexirubins are yellow at neutral pH but undergo a reversible
switch to red under alkaline conditions. This allows simple
identification of flexirubin-negative mutants.

A combination of genome analysis and genetic experiments
resulted in identification of a cluster of genes involved in flex-
irubin synthesis. Comparative genome analysis identified two
genes, Fjoh_1103 and Fjoh_1102, with likely roles in flexirubin
synthesis. Homologs of these genes were identified in the ge-
nomes of the three flexirubin-producing bacteroidetes, F.
johnsoniae, F. psychrophilum, and C. hutchinsonii, but not in
the flexirubin nonproducers Bacteroides fragilis, B. thetaio-
taomicron, Bacteroides vulgatus, G. forsetii, Parabacteroides dis-
tasonis, and P. gingivalis. Fjoh_1103 and Fjoh_1102 are similar
to P. aurantiaca darA, and darB, respectively, which are in-
volved in biosynthesis of the antifungal compound 2-hexyl-5-
propyl-alkylresorcinol (68). Similar 2,5-dialkylresorcinol com-
pounds are likely intermediates in F. johnsoniae flexirubin
biosynthesis. An insertion mutation was constructed in F.
johnsoniae darB (Fjoh_1102), and the resulting strain, CJ1702,
lacked flexirubin pigments. Cells of the mutant were cream

colored, whereas wild-type cells were yellow at neutral pH and
red under alkaline conditions (Fig. 3B). The conversion of
yellow wild-type cells to red cells by exposure to KOH was
reversed by addition of HCl, as previously reported for flex-
irubin pigments (3). F. johnsoniae darA and darB are part of a
large cluster of genes transcribed in the same direction and
organized in what appear to be several operons (Fig. 3C).
Genome comparisons revealed that in addition to darA and
darB, homologs of seven other genes in this cluster (Fjoh_1080,
Fjoh_1084, Fjoh_1095, Fjoh_1097, Fjoh_1098, Fjoh_1100,
Fjoh_1108) are present in the flexirubin-positive bacteroidetes
mentioned above but not in bacteroidetes that are flexirubin
negative. Most of these genes encode hypothetical proteins of
unknown function, but Fjoh_1095 encodes a predicted compo-
nent of an ABC-2-type transporter that could be involved in
localization of flexirubin pigments. Many other genes in this
region are predicted to encode enzymes involved in lipid syn-
thesis, such as a (3-oxoacyl)-acyl carrier protein synthase
(Fjoh_1087), beta-ketoacyl synthases (Fjoh_1088, Fjoh_1093,
Fjoh_1106), and a beta-hydroxyacyl-(acyl carrier protein) de-
hydratase (Fjoh_1081), and some of these enzymes could have
roles in flexirubin synthesis. darA, darB, and perhaps other
genes in this region may also be involved in the synthesis of the
mammalian cell growth-promoting dialkylresorcinol resor-
cinin, which is produced by strains of F. johnsoniae (38). Cos-
mid complementation of the spontaneous flexirubin-negative
mutant F. johnsoniae UW102-154 (19, 37) confirmed that
genes in this region other than darA and darB are involved in
flexirubin synthesis, since the complementing plasmid, pMM340,
carried a region spanning Fjoh_1078 to Fjoh_1089 (Fig. 3B and
3C). Further analysis of this region will likely elucidate the
steps involved in the biosynthesis of flexirubins and of other
bacteroidete dialkylresorcinols. Similar approaches could identify
genes involved in sulfonolipid synthesis.

Strains of F. johnsoniae are known to produce several sec-
ondary metabolites in addition to resorcinin, including monobac-
tam and quinoline antibiotics (25, 44, 45), and numerous other
secondary metabolites are produced by related bacteria (66).

FIG. 3. Identification of a cluster of genes involved in synthesis of flexirubin. (A) Structure of F. johnsoniae flexirubin with the dialkyl resorcinol
moiety circled. “n” indicates that the length of the polyene units varies from 6 to 8. R1 and R2 indicate alkyl chains that are various lengths and
have various structures, and R3 indicates either H or Cl. (B) Analysis of wild-type, mutant, and complemented strains for flexirubin pigment. Cells
were grown on CYE agar, and the same samples were photographed before treatment (unlabeled), after exposure to 50 �l of 10 N KOH (� KOH),
and after exposure to KOH followed by exposure to 42 �l 12 N HCl (� HCl). Flexirubin-positive cells were yellow at neutral pH and red under
alkaline conditions. (C) Gene cluster linked to flexirubin synthesis. The 37-kbp region of DNA spanning Fjoh_1073 to Fjoh_1110 is shown. The
predicted dialkyl resorcinol biosynthesis genes darA and darB are orange. pMM340, which complements the flexirubin mutant UW102-154, carries
a 12.8-kbp region spanning Fjoh_1078 to Fjoh_1089.
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Several clusters of genes likely to be involved in secondary
metabolite production were identified in the F. johnsoniae ge-
nome. Most striking was a cluster of genes in the 70.7-kbp
region spanning Fjoh_2083 to Fjoh_2104 that appear to en-
code components of a multienzyme nonribosomal peptide syn-
thetase assembly line with a novel predicted product having
an unknown function (see Fig. S3 in the supplemental mate-
rial). F. johnsoniae also appears to have the capacity to
produce an aerobactin-like siderophore. Genes located be-
tween Fjoh_3170 and Fjoh_3179 are predicted to be involved
in the regulation, synthesis, and export of this compound.

Signal transduction and regulation of gene expression. F.
johnsoniae genes encode a variety of proteins that are pre-
dicted to regulate gene expression in response to external or
internal stimuli. The sigma factors include an RpoD (�70)
homolog, an RpoN (�54) homolog, and 27 sigma factors be-
longing to the ECF subfamily. F. johnsoniae RpoD is similar in
size (32.7 kDa) and sequence to other bacteroidete RpoD
proteins and is much smaller than E. coli �70. Like the other
bacteroidete RpoD proteins, F. johnsoniae RpoD lacks regions
found in most nonbacteroidete RpoD proteins, such as N-
terminal region 1.1 and the segment between regions 1.2 and
2.1 (92). The novel structure of bacteroidete RpoD sigma
factors may account for some of the unusual features of bac-
teroidete housekeeping promoters (10, 20). For example, the
�33/�7 consensus promoter sequence of F. johnsoniae and
other members of the Bacteroidetes phylum that have been
studied (TTG/TANNTTTG) differs from the �35/�10 consen-
sus promoter sequences of other well-studied bacteria (20). A
search of the F. johnsoniae genome with the promoter consen-
sus sequence (with spacing between the two motifs set at the
optimal value, 19 bp) revealed 109 exact matches in intergenic
regions on the coding strand within 300 bp upstream of a start
codon, whereas a similar search of the E. coli genome with the
same consensus sequence revealed less than 10 sequences (20).
Not surprisingly many of the putative F. johnsoniae promoters
identified were associated with housekeeping genes that are
likely to be highly expressed. Promoters with slight variations
in the consensus sequence would have been missed by this
analysis, so it is likely that many more RpoD-dependent pro-
moters are present in the F. johnsoniae genome.

The functions of F. johnsoniae RpoN (�54) are not known,
but �54-like proteins are required for transcription of genes
involved in a wide variety of processes in other bacteria. In
these other bacteria �54-RNA polymerase holoenzyme (�54-
holoenzyme) binds to promoter sequences to form a closed
complex, but it cannot proceed further in transcription initia-
tion in the absence of an activator. Activators of �54-holoen-
zyme generally bind to sites located upstream of the promoter
and contact �54-holoenzyme through DNA looping to stimu-
late transcription. Binding sites for �54-dependent activators
are referred to as bacterial enhancers because some of them
can function when they are moved several kilobases from their
native locations.

Activators of �54-holoenzyme usually consist of an N-termi-
nal regulatory domain, a central domain required for ATP
hydrolysis and transcriptional activation, and a C-terminal
DNA-binding domain. F. johnsoniae has six predicted �54-
dependent activators (Fjoh_0470, Fjoh_0638, Fjoh_1332,
Fjoh_1848, Fjoh_1977, and Fjoh_5047). Five of these activa-

tors have N-terminal response regulator receiver domains,
whereas the remaining activator (Fjoh_1848) contains an N-
terminal PAS domain. The stimuli controlling these activators
are not known, but Fjoh_0470, Fjoh_0638, and Fjoh_1332 are
adjacent to genes that likely encode the presumptive cognate
sensor kinases.

Fjoh_5047 is unique among the F. johnsoniae �54-dependent
activators in that it lacks a DNA-binding domain. When ex-
pressed in E. coli, Fjoh_5047 activated transcription from a
�54-dependent lacZ reporter gene (data not shown), indicating
that it is a functional activator. Examples of �54-dependent
activators lacking DNA-binding domains are found in other
members of the Bacteroidetes (11). A problem of specificity of
gene activation arises for these unusual activators. In the few
bacteria outside the Bacteroidetes phylum that are known to
have such activators, specificity is conferred by one of two
mechanisms. Some of these bacteria have only a single �54-
dependent activator and thus avoid the specificity problem
entirely, and specificity is conferred by the sigma factor (67). In
other cases multiple �54-dependent activators are present, but
these activators interact with different versions of �54 (74, 75).
F. johnsoniae has multiple �54-dependent activators and a sin-
gle �54, so it is unclear how specificity could be conferred
without a DNA-binding domain. Fjoh_5047 may indiscrimi-
nately activate transcription of all of the genes in the RpoN
regulon. Alternatively, Fjoh_5047 may gain specificity by inter-
acting with an unidentified DNA-binding protein, or it may
engage �54-holoenzyme in solution to alter the promoter spec-
ificity of the enzyme.

The genes regulated by RpoN and its activators are not
known, but analysis of genes located near the genes encoding
�54-dependent activators and identification of sequences that
match the �54 consensus sequence suggest likely candidates
(see Table S6 in the supplemental material). Two apparent oper-
ons (Fjoh_0471, Fjoh_0472, and Fjoh_0473; and Fjoh_1331,
Fjoh_1330, and Fjoh_1329) are particularly good candidates
for �54-dependent regulation because they are located adja-
cent to genes encoding �54-dependent activators and they have
sequences that match the �54 promoter consensus sequence. In
addition, multiple regions of dyad symmetry that may function
as binding sites for the �54-dependent activators are located
within 63 bp upstream of these putative promoters. Both of
these operons are predicted to encode ABC-type antibacterial
peptide transport systems, suggesting roles for �54 in resistance
to such compounds.

The presence of large numbers of ECF sigma factors is a
common property of members of the phylum Bacteroidetes
(46). ECF sigma factors in other bacteria regulate expression
of genes with extracellular functions. This regulation often
involves transmembrane FecR-like anti-sigma factors that sense
extracytoplasmic stimuli, and 12 of the 27 F. johnsoniae genes
encoding ECF sigma factors are adjacent to genes predicted to
encode such anti-sigma factors. Eight of the ECF sigma factors
are encoded by genes that are adjacent to susC-like and susD-
like genes (Fig. 2; see Fig. S2 in the supplemental material),
and each of these genes is accompanied by a fecR-like anti-
sigma factor gene. The eight SusC-like proteins encoded by
these regions have an extra N-terminal signaling domain that is
thought to interact with the relevant anti-sigma factor during
signaling (Fig. 2) (48). Expression of nearby genes involved in
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macromolecule utilization may be regulated in response to the
substrates via interaction of a SusC-like protein with compo-
nents of the corresponding ECF sigma factor–anti-sigma factor
system. The other susC-like and susD-like gene-containing
PULs lack ECF sigma factor genes but contain genes encoding
other types of regulatory proteins (Fig. 2; see Fig. S2 in the
supplemental material). These proteins include members of
two-component regulatory systems, LuxR-winged helix regula-
tors, LacI-type repressors, XRE-like repressors, and AraC
family regulators.

The diversity of regulatory mechanisms extends beyond genes
involved in utilization of polysaccharides. F. johnsoniae genes
are predicted to encode 107 transcription regulatory proteins.
Several regulatory systems found in F. johnsoniae were unex-
pected. F. johnsoniae has genes encoding components of the
rsb global stress response system, which is not widely distrib-
uted among members of the phylum Bacteroidetes. This system
involves control of an alternative sigma factor by a complex
anti-sigma factor–anti-sigma factor agonist interaction that is
modulated by phosphorylation (55). F. johnsoniae genes are
predicted to encode 30 cyclic-nucleotide-binding proteins, and
this organism probably uses cyclic AMP to regulate gene ex-
pression and enzymatic activities. In contrast, it does not ap-
pear to use the common bacterial signaling molecule cyclic
di-GMP because, as is the case for most bacteroidetes, genes
encoding GGDEF and EAL domain proteins have not been
identified.

F. johnsoniae has several regulatory systems that may re-
spond to light. The genes encoding these systems include genes
encoding two phytochromes (Fjoh_3820 and Fjoh_3936) and
genes encoding proteins related to the cyanobacterial circadian
rhythm regulatory proteins KaiB (Fjoh_ 4009 and Fjoh_4010)
and KaiC (Fjoh_4008). The functions of these genes in F.
johnsoniae are not known, but their presence suggests the
possibility that this heterotrophic bacterium may respond to
light and regulate gene expression in a circadian manner.
The two phytochromes are similar to other bacterial phyto-
chromes and contain PAS, GAF, phytochrome, and histi-
dine kinase domains. In addition to the putative phyto-
chromes, F. johnsoniae genes are predicted to encode 13 other
PAS domain-containing proteins of unknown function and
four GAF domain-containing proteins of unknown function.

Gliding motility. F. johnsoniae cells cannot swim in liquid,
but they attach to and move along surfaces at speeds of up to 5
�m/s in a process known as gliding motility. Gliding motility is
characteristic of many members of the phylum Bacteroidetes
(58). In some bacteria belonging to other phylogenetic
branches, flagella and type IV pili allow cells to move over
surfaces (32, 57). Electron microscopic analyses have failed to
identify these organelles on cells of F. johnsoniae, and analysis
of the genome also failed to identify genes encoding critical
components of flagella and type IV pili, suggesting that F.
johnsoniae gliding motility is achieved by another mechanism.

Fourteen genes (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ,
gldK, gldL, gldM, gldN, sprA, and sprB) involved in F.
johnsoniae gliding motility have been identified (4, 14, 15,
35–37, 60, 61, 64, 65). These genes are scattered across 2.24 Mb
of DNA (Fig. 1) and are organized in 11 operons. The proteins
encoded by these genes all localize or are predicted to localize
to the cell envelope, and six of them are lipoproteins. Many of

the motility proteins are novel and lack homologs outside the
Bacteroidetes. Some or all of the Gld proteins are thought to be
components of the “motor” that propels the cell (41). SprB is
a large cell surface protein that is thought to function as an
adhesin and appears to be propelled along the cell surface by
the Gld motor (64). Disruption of gld genes results in a com-
plete loss of motility, but disruption of sprB causes only a
partial defect in motility (64). Cells of sprB mutants fail to
move on agar, but they exhibit some motility on glass surfaces.
Analysis of the F. johnsoniae genome suggests an explanation
for this finding, because multiple paralogs of sprB are present.
Cells with mutations in sprB and in one of its paralogs
(Fjoh_0808) have much more severe motility defects than cells
with mutations in either gene alone (73). Such “synthetic”
motility defects suggest that SprB and the other SprB-like
proteins are semiredundant mobile cell surface components of
the motility machinery that allow attachment to and movement
over the many different types of surfaces that cells encounter.

F. johnsoniae genes encode numerous proteins predicted to
be involved in the biosynthesis and export of exopolysaccha-
rides. Many of these genes are located in a 76.5-kbp region of
DNA spanning Fjoh_0290 to Fjoh_0361, which contains
closely spaced genes that are all transcribed in the same direc-
tion. Recent results indicate that some of these genes have
roles in motility. Strains with mutations in several of these
genes have synthetic motility defects in an sprB mutant back-
ground (73). Specific exopolysaccharides may be required for
efficient movement over some surfaces. SprB and some of the
SprB-like proteins have lectin-like domains predicted to inter-
act with carbohydrates. The polysaccharides may coat the sub-
stratum and allow productive contact with SprB-like cell sur-
face adhesins, thus facilitating cell movement over diverse
surfaces.

The genomes of other bacteroidetes known to exhibit gliding
motility, such as F. psychrophilum and C. hutchinsonii, have
homologs of each of the 14 F. johnsoniae motility genes de-
scribed above (see Table S7 in the supplemental material). Not
surprisingly, the amino acid sequences of the F. johnsoniae and
F. psychrophilum motility proteins are similar, with identities
ranging from 32% to 87%. C. hutchinsonii is not closely related
to the two flavobacteria, and the levels of amino acid identity
with the F. johnsoniae motility proteins are lower, ranging from
22% to 50%. In spite of the divergence in amino acid sequence,
the organization of several gene clusters has been highly
conserved. For example, gldF and gldG, which have been
demonstrated to constitute an operon in F. johnsoniae (35),
are also likely to be cotranscribed in F. psychrophilum and in
C. hutchinsonii based on genome sequence analyses. GldF and
GldG localize in the cytoplasmic membrane of F. johnsoniae
and interact with GldA (35). Together, these proteins are
thought to constitute an ATP-binding cassette transporter that
is required for gliding. C. hutchinsonii gldA appears to be
cotranscribed with gldF and gldG, which is consistent with the
hypothesis that the products of these genes function together
and form a complex. In F. johnsoniae, gldK, gldL, gldM, and
gldN are clustered together on the genome and form two ad-
jacent operons, and gldK is transcribed separately from the
other three genes (14). A similar arrangement is found in F.
psychrophilum and C. hutchinsonii. This may suggest that the
protein products of these genes function together as part of a
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complex and that coordinated expression may be important for
assembly of the complex in the cell envelope.

Nonmotile bacteroidetes, such as P. gingivalis, B. fragilis, B.
thetaiotaomicron, B. vulgatus, P. distasonis, and Salinibacter ru-
ber, have homologs of some, but not all, of the F. johnsoniae
motility genes (see Table S7 in the supplemental material).
The SprA homolog in P. gingivalis, Sov, is required for secre-
tion of gingipain proteases (80). Recent results suggest that
homologs of GldK, GldL, GldM, and GldN are also required
for P. gingivalis gingipain secretion and may be components of
a novel protein secretion system (Sato et al., submitted). Con-
servation of many of the genes encoding these proteins in B.
fragilis and P. distasonis suggests that similar protein secretion
systems may function in many gliding and nongliding bacte-
roidetes. The F. johnsoniae secretion system may function in
translocation of the motility protein SprB to the cell surface
(Sato et al., submitted). The presence of a protein transloca-
tion machine at the heart of a motility apparatus is not unique,
because the bacterial flagellum is built around a type III se-
cretion system that is involved in secretion of flagellins and
some other flagellar proteins (5). P. gingivalis lacks homologs
of gldD, gldF, gldG, and gldJ. The proteins encoded by these
genes may have functions that are essential for motility but not
for protein secretion. The presence of homologs of each of the
motility genes in the genome of the relatively unstudied marine
bacteroidete G. forsetii (9) suggests that it may have the ability
to glide, a property that has not been experimentally ob-
served yet.

Most motile bacteria control their motility to move in a
favorable direction. This typically involves a complex signal
transduction system related to the E. coli chemotaxis system. F.
johnsoniae has homologs of E. coli cheY (Fjoh_3353), cheB
(Fjoh_3351), and cheR (Fjoh_3352). These genes are clustered
together on the genome, supporting the idea that their prod-
ucts may function together. F. johnsoniae CheB is unusual in
that it lacks the N-terminal response regulatory domain that is
found in most CheB proteins. Genes encoding other expected
components of a bacterial chemotaxis system, such as ho-
mologs of methyl-accepting chemotaxis proteins (MCPs), and
of CheA, CheW, and CheZ, are apparently not present. The
absence of obvious MCPs is surprising since CheB (methyles-
terase) and CheR (methyltransferase) are expected to modify
MCPs. The region surrounding F. johnsoniae cheB, cheR, and
cheY contains several genes whose products are likely to be
involved in signal transduction. These products include an ap-
parent histidine kinase with a PAS domain (Fjoh_3360), a protein
that contains a histidine kinase domain and a response regulatory
domain (Fjoh_3355), and a large protein (Fjoh_3354) that con-
tains a CHASE3 domain, a GAF domain, a histidine kinase
domain, and a response regulatory domain. PAS, CHASE3,
and GAF domains are commonly found in sensory or signal
transduction proteins (7, 90, 100) and could have roles in F.
johnsoniae tactic responses. However, the absence of central
components of bacterial chemotaxis systems, such as CheA
and MCPs, and the fact that the closely related gliding bacte-
rium F. psychrophilum lacks cheB, cheR, and other obvious
chemotaxis genes suggest that the genes and proteins involved
in control of the bacteroidete motility machinery may be novel.
Alternatively, cells of F. johnsoniae and F. psychrophilum may
lack chemotaxis entirely, as has been suggested for several

other motile bacteria that appear to lack critical chemotaxis
genes (8, 22, 62). Negative chemotaxis of F. johnsoniae in
response to H2O2 and several other chemicals has been re-
ported based on observations of swarming patterns of groups
of cells (51), but an analysis of the behavior of individual cells
in response to potential chemoeffectors has not been con-
ducted yet.

Numerous aspects of the physiology and molecular biology
of F. johnsoniae were revealed in this initial analysis of its
genome sequence. Many of these aspects, such as the unusual
gliding motility machinery, protein secretion system, and poly-
saccharide utilization strategy, are shared by other members
of the phylum Bacteroidetes. The genome sequence data and
the availability of techniques to genetically manipulate F.
johnsoniae should result in rapid progress toward a better
understanding of the many novel features of these common but
understudied bacteria.
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Complete genome sequence of the fish pathogen Flavobacterium psy-
chrophilum. Nat. Biotechnol. 25:763–769.

25. Evans, J. R., E. J. Napier, and R. A. Fletton. 1978. G1499-2, a new quinoline
compound isolated from the fermentation broth of Cytophaga johnsonii. J.
Antibiot. 31:952–958.

26. Gardy, J. L., M. R. Laird, F. Chen, S. Rey, C. J. Walsh, M. Ester, and
F. S. L. Brinkman. 2005. PSORTb v. 2.0: expanded prediction of bacterial
protein subcellular localization and insights gained from comparative pro-
teome analysis. Bioinformatics 21:617–623.

27. Gilmore, D. F., W. Godchaux III, and E. R. Leadbetter. 1989. Cysteine is
not an obligatory intermediate in the biosynthesis of cysteate by Cytophaga
johnsonae. Biochem. Biophys. Res. Commun. 160:535–539.

28. Gilmore, D. F., W. Godchaux III, and E. R. Leadbetter. 1989. Regulation of
sulfate assimilation in Cytophaga johnsonae. Arch. Microbiol. 152:387–392.

29. Godchaux, W., III, and E. R. Leadbetter. 1983. Unusual sulfonolipids are
characteristic of the Cytophaga-Flexibacter group. J. Bacteriol. 153:1238–
1246.

30. Han, C. S., and P. Chain. 2006. Finishing repetitive regions automatically
with Dupfinisher, p. 142–147. In H. R. Arabnia and H. Valafar (ed.),
Proceedings of the 2006 International Conference on Bioinformatics &
Computational Biology. CSREA Press, Las Vegas, NV.

31. Hanley, S. A., J. Aduse-Opoku, and M. A. Curtis. 1999. A 55-kilodalton
immunodominant antigen of Porphyromonas gingivalis W50 has arisen via
horizontal gene transfer. Infect. Immun. 67:1157–1171.

32. Harshey, R. M. 1994. Bees aren’t the only ones: swarming in Gram-negative
bacteria. Mol. Microbiol. 13:389–394.

33. Henikoff, S., and J. G. Henikoff. 1994. Protein family classification based on
searching a database of blocks. Genomics 19:97–107.

34. Hinderlich, S., M. Berger, M. Schwarzkopf, K. Effertz, and W. Reutter.
2000. Molecular cloning and characterization of murine and human N-
acetylglucosamine kinase. Eur. J. Biochem. 267:3301–3308.

35. Hunnicutt, D. W., M. J. Kempf, and M. J. McBride. 2002. Mutations in
Flavobacterium johnsoniae gldF and gldG disrupt gliding motility and inter-
fere with membrane localization of GldA. J. Bacteriol. 184:2370–2378.

36. Hunnicutt, D. W., and M. J. McBride. 2001. Cloning and characterization
of the Flavobacterium johnsoniae gliding motility genes gldD and gldE. J.
Bacteriol. 183:4167–4175.

37. Hunnicutt, D. W., and M. J. McBride. 2000. Cloning and characterization
of the Flavobacterium johnsoniae gliding motility genes, gldB and gldC. J.
Bacteriol. 182:911–918.

38. Imai, S., K. Fujioka, K. Furihata, R. Fudo, S. Yamanaka, and H. Seto. 1993.
Studies on cell growth stimulating substances of low molecular weight. Part

3. Resorcinin, a mammalian cell growth stimulating substance produced by
Cytophaga johnsonae. J. Antibiot. 46:1319–1322.

39. Jackson, C. A., B. Hoffmann, N. Slakeski, S. Cleal, A. J. Hendtlass, and
E. C. Reynolds. 2000. A consensus Porphyromonas gingivalis promoter se-
quence. FEMS Microbiol. Lett. 186:133–138.

40. Janson, J. C. 1975. Studies on dextran-degrading enzymes. Isolation and
identification of a dextranase-producing strain of Cytophaga johnsonii and
studies on the formation of the surface-bound enzyme. J. Gen. Microbiol.
88:205–208.

41. Jarrell, K. F., and M. J. McBride. 2008. The surprisingly diverse ways that
prokaryotes move. Nat. Rev. Microbiol. 6:466–476.

42. Juncker, A. S., H. Willenbrock, G. von Heijne, H. Nielsen, S. Brunak, and
A. Krogh. 2003. Prediction of lipoprotein signal peptides in Gram-negative
bacteria. Protein Sci. 12:1652–1662.

43. Karlsson, E. N., M. A. Hachem, S. Ramchuran, H. Costa, O. Holst, S. F.
Svenningsen, and G. O. Hreggvidsson. 2004. The modular xylanase
Xyn10A from Rhodothermus marinus is cell-attached, and its C-terminal
domain has several putative homologues among cell-attached proteins
within the phylum Bacteroidetes. FEMS Microbiol. Lett. 241:233–242.

44. Kato, T., H. Hinoo, J. Shoji, K. Matsumoto, T. Tanimoto, T. Hattori, K.
Hirooka, and E. Kondo. 1987. PB-5266 A, B and C, new monobactams. I.
Taxonomy, fermentation and isolation. J. Antibiot. 55:135–138.

45. Kato, T., H. Hinoo, Y. Terui, J. Nishikawa, Y. Nakagawa, Y. Ikenishi, and
J. Shoji. 1987. PB-5266 A, B and C, new monobactams. II. Physico-chem-
ical properties and chemical structures. J. Antibiot. 55:139–144.

46. Kill, K., T. T. Binnewies, T. Sicheritz-Ponten, H. Willenbrock, P. F. Hallin,
T. M. Wassenaar, and D. W. Ussery. 2005. Genome update: sigma factors
in 240 bacterial genomes. Microbiology 151:3147–3150.

47. Kirchman, D. L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic
environments. FEMS Microbiol. Ecol. 39:91–100.

48. Koebnik, R. 2005. TonB-dependent trans-envelope signalling: the exception
or the rule? Trends Microbiol. 13:343–347.

49. Koropatkin, N. M., E. C. Martens, J. I. Gordon, and T. J. Smith. 2008.
Starch catabolism by a prominent human gut symbiont is directed by the
recognition of amylose helices. Structure 16:1105–1115.

50. Li, L.-Y., N. B. Shoemaker, and A. A. Salyers. 1995. Location and charac-
terization of the transfer region of a Bacteroides conjugative transposon and
regulation of the transfer genes. J. Bacteriol. 177:4992–4999.

51. Liu, Z. X., and I. Fridovich. 1996. Negative chemotaxis in Cytophaga johnso-
nae. Can. J. Microbiol. 42:515–518.

52. Lovatt, A., and I. S. Roberts. 1994. Cloning and expression in Escherichia
coli of the nahA gene from Porphyromonas gingivalis indicates that beta-N-
acetylhexosaminidase is an outer-membrane-associated lipoprotein. Micro-
biology 140:3399–3406.

53. Lowe, T. M., and S. R. Eddy. 1997. tRNAscan-SE: a program for improved
detection of transfer RNA genes in genomic sequence. Nucleic Acids Res.
25:955–964.

54. Markowitz, V. M., F. Korzeniewski, K. Palaniappan, E. Szeto, G. Werner,
A. Padki, X. Zhao, I. Dubchak, P. Hugenholtz, I. Anderson, A. Lykidis, K.
Mavromatis, N. Ivanova, and N. C. Kyrpides. 2006. The integrated micro-
bial genomes (IMG) system. Nucleic Acids Res. 34:D344–D348.

55. Marles-Wright, J., and R. J. Lewis. 2007. Stress responses of bacteria. Curr.
Opin. Struct. Biol. 17:755–760.

56. Martens, E. C., H. C. Chiang, and J. I. Gordon. 2008. Mucosal glycan
foraging enhances fitness and transmission of a saccharolytic human gut
bacterial symbiont. Cell Host Microbe 4:447–457.

57. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Micro-
biol. 56:289–314.

58. McBride, M. J. 2001. Bacterial gliding motility: multiple mechanisms for
cell movement over surfaces. Annu. Rev. Microbiol. 55:49–75.

59. McBride, M. J. 2004. Cytophaga-Flavobacterium gliding motility. J. Mol.
Microbiol. Biotechnol. 7:63–71.

60. McBride, M. J., and T. F. Braun. 2004. GldI is a lipoprotein that is required
for Flavobacterium johnsoniae gliding motility and chitin utilization. J. Bac-
teriol. 186:2295–2302.

61. McBride, M. J., T. F. Braun, and J. L. Brust. 2003. Flavobacterium
johnsoniae GldH is a lipoprotein that is required for gliding motility and
chitin utilization. J. Bacteriol. 185:6648–6657.

62. Moran, M. A., A. Buchan, J. M. González, J. F. Heidelberg, W. B. Whitman,
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